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Abstract
Background  The development of reproducible and sensitive outcome measures has been challenging in hereditary tran-
sthyretin (ATTRv) amyloidosis. Recently, quantification of intramuscular fat by magnetic resonance imaging (MRI) has 
proven as a sensitive marker in patients with other genetic neuropathies. The aim of this study was to investigate the role of 
muscle quantitative MRI (qMRI) as an outcome measure in ATTRv.
Methods  Calf- and thigh-centered multi-echo T2-weighted spin-echo and gradient-echo sequences were obtained in patients 
with ATTRv amyloidosis with polyneuropathy (n = 24) and healthy controls (n = 12). Water T2 (wT2) and fat fraction (FF) 
were calculated. Neurological assessment was performed in all ATTRv subjects. Quantitative MRI parameters were cor-
related with clinical and neurophysiological measures of disease severity.
Results  Quantitative imaging revealed significantly higher FF in lower limb muscles in patients with ATTRv amyloidosis 
compared to controls. In addition, wT2 was significantly higher in ATTRv patients. There was prominent involvement of the 
posterior compartment of the thighs. Noticeably, FF and wT2 did not exhibit a length-dependent pattern in ATTRv patients. 
MRI biomarkers correlated with previously validated clinical outcome measures, Polyneuropathy Disability scoring system, 
Neuropathy Impairment Score (NIS) and NIS-lower limb, and neurophysiological parameters of axonal damage regardless 
of age, sex, treatment and TTR mutation.
Conclusions  Muscle qMRI revealed significant difference between ATTRv and healthy controls. MRI biomarkers showed 
high correlation with clinical and neurophysiological measures of disease severity making qMRI as a promising tool to be 
further investigated in longitudinal studies to assess its role at monitoring onset, progression, and therapy efficacy for future 
clinical trials on this treatable condition.
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ATTRv	� Hereditary transthyretin amyloidosis ("v" for 

variant)
TTR​	� Transthyretin
HC	� Healthy control

CMT1A	� Charcot-Marie-Tooth 1A
qMRI	� Quantitative MRI
FF	� Fat fraction
WT2	� Water T2
NIS	� Neuropathy Impairment Score
NIS-LL	� Neuropathy Impairment Score-lower limb
PND	� Polyneuropathy disability
NCS	� Nerve conduction study
CMAP	� Compound muscle action potential
SNAP	� Sensory nerve action potential
ME-SE	� Multi-echo spin-echo
ME-GRE	� Multi-echo gradient-echo
RF	� Rectus femoris
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VL	� Vastus lateralis
VI	� Vastus intermedius
VM	� Vastus medialis
AM	� Adductor magnus
AL	� Adductor longus
S	� Sartorius
G	� Gracilis
BFL	� Biceps femoris long head
BFS	� Biceps femoris short head
ST	� Semitendinosus
SM	� Semimembranosus
TA	� Tibialis anterior
EDL	� Extensor digitorum longus
PL	� Peroneus longus
LG	� Gastrocnemius lateralis
MG	� Gastrocnemius medialis
S	� Soleus
TP	� Tibialis posterior
MRN	� MRI neurography
MTR	� Magnetization transfer ratio

Introduction

Hereditary transthyretin (ATTRv; "v" for variant) amyloi-
dosis is a rare systemic disease caused by mutations in the 
transthyretin (TTR​) gene. Mutant TTR protein tends to mis-
fold and accumulates as amyloid extracellular fibrils across 
different tissues and organs, especially peripheral nerves, 
and heart. Since its identification, more than 150 amyloido-
genic mutations have been reported, with a broad phenotypic 
variability. The most frequent mutation is Val30Met (alter-
natively named p.Val50Met) which was the first one identi-
fied. ATTRv amyloidosis is a progressive, disabling and life-
threatening condition with a mean survival of 7–10 years 
after onset if left untreated [1–3].

Different therapies have been approved for ATTRv amy-
loidosis so far, including the TTR stabilizer tafamidis and, 
more recently, the RNAi agent patisiran and the antisense 
oligonucleotide inotersen [4, 5]. Moreover, other treatment 
options are underway [6]. Therefore, there is a constant 
need for sensitive biomarkers to help establishing the dis-
ease onset, to track its progression and to monitor the drug 
efficacy.

Similar to other neuromuscular disorders, the identifica-
tion of outcome measures has always proved challenging 
in ATTRv amyloidosis. To date, clinically based scales as 
Neuropathy Impairment Score (NIS) [7], NIS-lower limb 
(NIS-LL) [7, 8], NIS + 7 [7, 9–11] and modified NIS + 7 
(mNIS + 7) [4, 5, 9, 10] have been used in clinical trials 
to assess progression and treatment response, however, all 
them have limitations including inter-rater variability and 
their dependence on patient’s motivation.

Muscle quantitative MRI (qMRI) has been extensively 
used as an outcome measure in muscle diseases [12–15]. 
More recently, the quantification of intramuscular fat sub-
stitution (fat fraction, FF), which indirectly reflects axonal 
degeneration, showed high responsiveness to change over 
12 months in patients with genetic neuropathies including 
Charcot-Marie-Tooth 1A (CMT1A) and hereditary sensory 
neuropathy type 1 due to SPTLC1 and SPTLC2 mutations 
[16, 17]. In motoneuron diseases (amyotrophic lateral sclero-
sis, and spinal bulbar muscular atrophy) qMRI revealed sig-
nificant fat substitution compared to controls. It also corre-
lated with clinical measures, and identified distinct patterns 
of muscle involvement [18]. Moreover, STIR and relative 
T2-weighted signal turned out as objective surrogate mark-
ers of muscle denervation, and significantly increased over 
12 months [18, 19].

The aim of our cross-sectional study was to assess the 
role of qMRI of skeletal muscle as an outcome measure in 
ATTRv amyloidosis with polyneuropathy (ATTRv-PN) and 
compare it with previously validated and functionally rel-
evant clinical outcomes.

Materials and methods

Study design and patient recruitment

We performed a prospective cross-sectional study assessing 
muscle qMRI of the lower limbs in symptomatic patients 
diagnosed with ATTRv-PN (n = 24) who were enrolled 
among those who attended the Amyloidosis Research and 
Treatment Center (IRCCS Fondazione Policlinico S. Matteo) 
in Pavia (Italy) between September 2017 and August 2018.

ATTRv-PN patients were defined as symptomatic when 
Polyneuropathy Disability (PND) [20] scored >  = 1.

Healthy controls (HCs), group-matched for age and 
sex, were also enrolled (n = 12). Exclusion criteria for 
all participants were pregnancy and safety-related MRI 
contraindications.

Data acquisition: clinical and functional testing 
and electrophysiological revision

All patients underwent detailed assessment by E.V. includ-
ing demographic records, past medical history and full neu-
rologic examination. Patients were rated using PND scoring 
system [20], NIS [7] and NIS-LL [7, 8]. PND score was 
graded as follows: PND = 1 (sensory disturbances with pre-
served walking capability), PND = 2 (sensory-motor symp-
toms with unassisted gait), PND = 3 (sensory-motor symp-
toms with assisted gait), and PND = 4 (wheelchair-bound 
or bedridden). In a subset of n = 17 patients who underwent 
nerve conduction studies (NCSs) at the same time from MRI, 



Journal of Neurology	

1 3

compound muscle action potential (CMAP) of peroneal and 
tibial nerve, and sensory nerve action potential (SNAP) of 
sural nerve, measured form peak to peak, were reviewed in 
detail and considered for further analysis. For each patient, 
the most affected side was considered unless the asymmetry 
was due to other conditions (e.g., radiculopathy).

Magnetic resonance imaging

Muscle MRI was performed at IRCCS Mondino Foundation. 
Participants were examined on a 3 T scanner (MAGNETOM 
Skyra, Siemens, Erlangen, Germany) lying supine and feet-
first The acquisition protocol included calf- and thigh-level 
centered T1-weigthed, short tau inversion recovery (STIR), a 
2D multi-echo T2-weighted spin-echo (SE) (ME-SE) (num-
ber of echoes 17, number of slices 7, repetition time (TR) 
4100 ms, first echo time (TE) and echo spacing 10.9 ms, 
bandwidth 250 Hz/px, matrix size 192 × 384, resolution 
1.2 × 1.2 mm2, slice thickness 10 mm, gap between slices 
30 mm), and a 3D gradient-echo (ME-GRE) (number of ech-
oes 6, TR 35 ms, first TE/echo spacing 1.7/1.5 ms, flip angle 
7°, bandwidth 1050 Hz/px, matrix size 396 × 432 × 52, reso-
lution 1.0 × 1.0 × 5.0 mm3). The sequence had a monopolar 
readout with interleaved echo spacing (even and odd echoes 
acquired in subsequent repetitions). Imaging of thigh and 
calf took approximately 35 and 25 min, respectively. 

MRI data analysis: muscle quantitative MRI 

A single observer (E.V.) with a 5-year training expertise and 
blinded to study groups outlined for each participant regions 
of interest (ROIs) on the 1st echo of the ME-SE sequence 
at mid-thigh (12 muscles) and mid-calf level (6 muscles) 
using ITK-SNAP software [21]. ROIs were then transferred 
to the 1st echo of the ME-GRE acquisition and manually 
adjusted to ensure proper alignment. All ROIs were verified 
by two expert neuroradiologists (A.P. and M.P.) with more 
than 5-year expertise in neuromuscular imaging.

The ME-SE sequence was processed using a bi-com-
ponent extended phase graph algorithm, implemented in 
Python, for quantification of water T2 (wT2) [22, 23], using 
an open-source toolbox [24]. The Fatty Riot algorithm was 
used offline for the calculation of fat/water images from 
the ME-GRE acquisition [25, 26] and then FF maps were 
obtained (FF = F/F + W*100%) from each ROI. Average val-
ues of FF and wT2 were calculated for the global ROI and 
for each muscle at thigh and calf level.

Figure 1 shows the muscles of the lower limbs which have 
been assessed. The tibialis posterior (TP) was not evaluated 
according to the poor quality of visualization at calf MRI.

Statistical analysis

Statistical analyses were performed with SPSS version 22 
(SPSS, Armonk, NY) with a significance α level of 0.05. 
Quantitative measures are reported as mean ± standard 
deviation (SD) or median and interquartile range (IQR) as 
appropriate according to their distribution. For intergroup 
comparisons two-sample t test and Mann–Whitney U test 
were applied as appropriate. Correlations of MRI param-
eters with clinical and electrophysiological measures were 
investigated with Spearman (ρ) or Pearson coefficients as 
appropriate according to data distribution. Graphics were 
obtained using Prism-GraphPad version 9.2.0 (332).

Results

Participant clinical and demographic records

We enrolled patients with ATTRv-PN (n = 24) and healthy 
controls, group-matched for age and sex (n = 12). Seven-
teen/24 (71%) patients were males, median age at enrollment 
was 63.5 years (range 42–77), and median disease duration 
was 5 years (range 4–11).

TTR mutations were: Val30Met (n = 6, 25%), Phe64Leu 
(n = 5, 21%), Glu89Gln (n = 3, 13%), Tyr78Phe (n = 3, 13%), 
Thr49Ala (n = 2, 8%), Ala109Ser (n = 2, 8%), Ile68Leu 
(n = 1, 4%), Ser77Tyr (n = 1, 4%), Ala49Met (n = 1, 4%).

The distribution of PND score was the following: 
PND = 1 (n = 11, 46%), PND = 2 (n = 9, 37.5%), PND = 3 
(n = 3, 12.5%), and PND = 4 (n = 1, 4%). Median NIS total 
and NIS-LL were 25.5 (range 0–170.5) and 14.5 (range 
0–88), respectively. Twenty-one/24 (87.5%) were on treat-
ment including tafamidis (n = 15, 71%), diflunisal (n = 3, 
14%), inotersen (n = 2, 10%), and patisiran (n = 1, 5%). Sev-
enteen/24 (71%) agreed also to undergo NCS evaluation.

Nine/12 (75%) HCs were males and median age at enroll-
ment was 59 years (range 46–68). Demographic and clinical 
data of the participants are summarized in Table 1 and Sup-
plementary Table 1.

Muscle fat fraction and water T2 distinguish 
patients with ATTRv amyloidosis from healthy 
controls

We found that FF was significantly higher in ATTRv patients 
compared to healthy controls at thigh (ATTRv vs con-
trols: median 9.8%, IQR 7.3% vs median 6.5%, IQR 2.5%; 
p = 0.002) and calf level (ATTRv vs controls: median 9.9%, 
IQR 6% vs median 7.1%, IQR 3.1%; p = 0.017).

Similarly, wT2 was significantly higher in ATTRv 
patients compared to healthy controls, both in the thighs 
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(ATTRv vs controls: median 44.8 ms, IQR 5.6 ms vs median 
40.8 ms, IQR 1.8 ms; p < 0.001) and in the calves (ATTRv 
vs controls: median 47.2 ms, IQR 12.2 ms vs median 42 ms, 
IQR 2.7 ms; p < 0.001) (Table 2; Fig. 2).

No significant difference was seen between patients car-
rying Val30Met (p.Val50Met) and other mutations (data not 
shown).

Quantitative MRI parameters correlate with clinical 
outcomes in ATTRv amyloidosis

We next assessed the role of qMRI as a biomarker of dis-
ease severity by looking at the correlation between qMRI 
measures and previously validated scales of disability (PND 
score) and neurologic impairment (NIS and NIS-LL).

Thigh and calf FF correlated well with PND score (thigh: 
r = 0.626, p = 0.001; calf: r = 0.623, p = 0.002), NIS (thigh: 
r = 0.553, p = 0.005; calf: r = 0.621, p = 0.002), and NIS-
LL (thigh: r = 0.553, p = 0.005; calf: r = 0.624, p = 0.002). 
Similarly, water T2 significantly correlated with PND score 
(thigh: r = 0.630, p = 0.001; calf: r = 0.690, p < 0.001), NIS 
(thigh: r = 0.725, p < 0.001; calf: r = 0.802, p < 0.001), and 
NIS-LL (thigh: r = 0.714, p < 0.001; calf: r = 0.785, p < 
0.001) (Fig. 3). These positive associations were independent 

from sex, age, treatment and mutation in a multivariable 
linear regression model (Supplementary Table 2).

Quantitative MRI parameters correlate with NCS 
measures in ATTRv amyloidosis

Quantitative MRI parameters also showed significant cor-
relation with several neurophysiological parameters. In 
particular, FF and wT2 negatively correlated with pero-
neal nerve CMAP (thigh: FF: r = − 0.504, p = 0.039; wT2: 
r = − 0.645, p = 0.005; calf: FF: r = − 0.748, p = 0.001; wT2: 
r = − 0.623, p = 0.013), tibial nerve CMAP (thigh: wT2: 
r = − 0.699, p = 0.003; calf: FF: r = − 0.757, p = 0.002; wT2: 
r = − 0.726, p = 0.003), and sural nerve SNAP (thigh: wT2: 
r = − 0.669, p = 0.003; calf: FF: r = − 0.770, p = 0.001; wT2: 
r = − 0.645, p = 0.009) amplitudes (Fig. 4).

Interestingly, in 7/17 (42%), ATTRv patients with unex-
citable or severely reduced motor and sensory action poten-
tials in the lower limbs (peroneal and tibial CMAP <  = 1 mV, 
sural SNAP <  = 1 microV) qMRI showed changes ranging 
from + 8% to + 16% of FF at thighs and + 9% to + 20% at 
calves, compared to an average in controls of 6.5% and 7.1%, 
respectively, correlating with clinical severity.

Fig. 1   Thigh and calf single muscle ROIs and compartments. Thigh 
(A) and calf (B) single muscle ROI of a healthy control superim-
posed on multi-echo spin-echo (ME-SE) sequence (1st echo) to 

extract water T2 values and on multi-echo gradient-echo (ME-GRE) 
sequence (1st echo) to obtain fat fraction maps. Thigh and calf com-
partments are reported on the right
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Muscle fat fraction and water T2 do not exhibit 
length‑dependent changes in ATTRv amyloidosis

ATTRv amyloidosis typically presents with a length-
dependent pattern of weakness, namely lower limbs are 
more affected than upper limbs and distal limb segments 
are more affected than proximal ones [27].

In our cohort, calf muscles were significantly weaker 
compared to thigh muscles as measured by NIS-LL (NIS-LL 

score at calf vs thigh: median 7, IQR 28.5 vs median 0, IQR 
6; p = 0.023).

Despite these clinical findings, thighs showed a similar 
degree of fat replacement compared to calves (thighs median 
FF 9.8%, IQR 7.3% vs calves median FF 9.9%, IQR 6.0%; 
p = 0.8). Similarly, no significant difference was appreci-
ated between wT2 at thigh and calf level (thighs median 
wT2 44.8, IQR 5.6 vs calves median wT2 47.2, IQR 12.2; 
p = 0.147) (Fig. 5).

Table 1   Demographic and 
clinical data of ATTRv patients 
and healthy controls

Demographics and clinical measures ATTRv patients (n = 24) Control group
(n = 12)

p value

Sex, M/F 17/7 9/3 0.80
Age, y 63.5 (42–77) 59 (46–68) 0.14
Median disease duration (range), y 5 (4–11) NA
Treatment, N/tot 21/24 NA
 Tafamidis 15/24
 Diflunisal 3/24
 Inotersen 2/24
 Patisiran 1/24

Mutation NA
 Val30Met 6/24
 Phe64Leu 5/24
 Glu89Gln 3/24
 Tyr78Phe 3/24
 Thr49Ala 2/24
 Ala109Ser 2/24
 Ile68Leu 1/24
 Ser77Tyr 1/24
 Ala49Met 1/24

PND score NA
 0 NA
 1–2 20/24
 3–4 4/24

Median NIS (range) 25.5 (0–170.5) NA
Median NIS-LL (range) 14.5 (0–80) NA

Table 2   Fat fraction (FF) and 
water T2 (wT2) of ATTRv 
patients and healthy controls

Data presented as median (range) as appropriate to distribution; p values calculated with Mann–Whitney U 
test

Quantitative imaging 
measures

ATTRv patients (n = 24) Healthy controls (n = 12) p value

MRI, thigh level
 FF, % 9.8 (4.1–31.3) 6.5 (4.2–9.0) 0.002
 wT2, ms 44.8 (39.7–64.6) 40.8 (39.0–42.8)  < 0.001

MRI, calf level
 FF, % 9.9 (4.0–42.8) 7.1 (4.1–11.5) 0.017
 wT2, ms 47.2 (39.7–75.2) 42.0 (39.6–44.8)  < 0.001
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Pattern of fat infiltration: posterior thigh 
involvement in ATTRv amyloidosis

Quantitative MRI identified a prominent involvement of 
the medio-posterior compartment of the thighs with a rela-
tive sparing of the quadriceps (median 12.8%, IQR 8.6% 
vs median 7.7%, IQR 5.5%; p = 0.010), despite the similar 
involvement at clinical examination (NIS-LL score anterior 
vs posterior region at thigh: median 0, IQR 2 vs median 0, 
IQR 3; p = 0.963).

At calf level, no significant difference in FF between 
different compartments was appreciated (deep posterior vs 
superficial posterior: p = 0.925; deep posterior vs antero-
lateral: p = 0.336; superficial posterior vs antero-lateral: 
p = 0.250; posterior vs antero-lateral: p = 0.229) (Fig. 5).

Discussion

In this study, we assessed the role of muscle qMRI as a 
novel outcome measure in a cohort of ATTRv patients with 
polyneuropathy. We showed that qMRI reveals significant 
difference between ATTRv patients and healthy controls 
and strongly correlates with previously validated clinical 
measures.

ATTRv amyloidosis is a progressive and highly debilitat-
ing hereditary disease, which is fatal within a decade without 
treatment [1–3]. Early diagnosis is key to promptly start an 
appropriate anti-amyloidogenic treatment. Therefore, there 
is a need for reliable and objective measures to establish the 
disease onset, track its progression and monitor the response 
to treatments.

To date, most outcome measures used in ATTRv-PN are 
based on clinical examination and functional impairment. 
In particular, NIS, along with its subset NIS-LL, which 

was first designed to grade neurological impairment in 
diabetic neuropathy [28], has become the most used out-
come measure in different clinical trials and observational 
studies in ATTRv amyloidosis [7, 8, 29]. However, it does 
not encompass the autonomic and cardiac involvement of 
the disease. Also, even if performed by expert and pre-
liminarily-trained clinicians, NIS and NIS-LL are limited 
by intra- and inter-rater variability [4, 30, 31] along with 
patient’s motivation. To better capture the multisystem 
involvement in ATTRv amyloidosis and reduce its varia-
bility [32], novel compound scales, NIS + 7 and mNIS + 7, 
have been developed [7, 9–11]. Although NIS + 7 and 
mNIS + 7 provide a thorough evaluation of ATTRv amy-
loidosis, they are time-consuming and require a bespoke 
setting and specific training of the examiners [33].

Quantitative MRI may represent an attractive option to 
overcome shortcomings in clinical examination as it is rel-
atively rapid, with high inter- and intra-operator reproduc-
ibility of manual muscle segmentation [21] and analysis 
can also be automated in all ATTRv patients. In particular, 
previous studies have shown that muscle quantitative MRI 
has a very good reproducibility with an interclass correla-
tion coefficient > 0.9 both for inter- and intra-rater agree-
ment [34]. The future implementation of robust machine 
learning algorithms for automatic segmentation of mus-
cles may be the key to overcome the limitations related to 
manual segmentation [35, 36].

Recently, MRI neurography of sciatic and sural nerve 
was shown to be able to accurately distinguish patients 
with ATTRv amyloidosis from controls and, importantly, 
to detect subclinical and early nerve lesions in asymp-
tomatic carriers [37, 38]. Similarly, magnetization trans-
fer ratio of the sciatic nerve showed promising results as 
it differentiated both symptomatic ATTRv patients and 
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asymptomatic carriers from healthy controls and corre-
lated with electrophysiology [39].

Muscle qMRI has been extensively applied as disease 
biomarker for the study of muscle dystrophies and other 
myopathies, including Duchenne muscular dystrophy, where 
both fat fraction and water T2 content provided sensitive 
noninvasive measures of disease progression over time [12]. 
More recently, quantification of intramuscular fat showed 
high responsiveness to change over 12-month time in genetic 
neuropathies, and currently represents the most sensitive 
outcome measure for the assessment of the slow progres-
sion of CMT1A [16].

Prompted by these encouraging results, we decided to 
assess the role of muscle qMRI in ATTRv amyloidosis with 
polyneuropathy. We evaluated both acute (tissue water con-
tent as expressed by T2 signal) and chronic (fat replace-
ment as expressed by FF) changes in the lower limb muscles. 
We found that water T2 and FF were significantly higher 
in ATTRv patients compared to healthy controls and were 
able to differentiate the two groups. Their increase might 
be explained by axonal damage due to the underlying neu-
ropathy resulting in acute (as defined by water T2) and 
chronic (as defined by FF) denervation. More important, we 
observed a moderate to strong positive correlation between 
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Fig. 4   Correlation of muscle quantitative MRI measures with NCS 
parameters in ATTRv amyloidosis. Negative correlation between 
NCS parameters namely peroneal nerve  compound muscle action 

potential (CMAP) (pink), tibial nerve  CMAP (green), and sural 
nerve  sensory nerve action potential (SNAP) (light-blue) and water 
T2 (wT2) and fat fraction (FF) at thigh (A) and calf (B) level
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muscle qMRI parameters (mean FF and wT2) at both thigh 
and calf level and patients’ functionally relevant clinical 
measures (PND score, NIS, and NIS-LL scales). Therefore, 
muscle qMRI represents a reliable surrogate measure of dis-
ease severity in ATTRv amyloidosis, which is independent 
of participant’s effort and with a high intra-rater agreement 
[21]. In addition, qMRI may help clinicians to monitor dis-
ease progression in ATTRv patients in more advanced stages 
of the disease, when widespread reduction or unexcitabil-
ity of motor and sensory action potentials limits the role of 
neurophysiology in assessing progression and response to 
treatment.

Interestingly, in ATTRv, qMRI showed a similar degree of 
fat replacement and water content of thigh and calf muscles, 
which was unexpected considering the length-dependent 

involvement of lower limb muscles at examination. This 
finding differed from previous studies on slowly progres-
sive neuropathies, CMT1A and hereditary neuropathy with 
liability to pressure palsies, where qMRI showed a higher 
degree of fat substitution at calves [40, 41]. However, it is 
worth noting that previous pathological studies have shown 
in ATTRv amyloidosis conspicuous amyloid deposition in 
dorsal roots and sympathetic ganglia [42]. Also, previous 
MR neurography studies have detected in ATTRv carriers 
the presence of early and prominent changes of the proxi-
mal nerve tracts compared to distal ones [37], which is in 
agreement with our finding of significant fat replacement of 
proximal muscles of the lower limbs.

Finally, skeletal muscle MRI showed a characteristic 
pattern in ATTRv patients with a preferential involvement 

Fig. 5   Muscle quantitative MRI 
imaging: thigh and calf com-
partments in ATTRv amyloido-
sis. Fat fraction (FF) and water 
T2 (wT2) were not significantly 
different between thigh and 
calf level (A). Fat substitution 
prevailed in the medio-posterior 
thigh compartment compared to 
the anterior region while no dif-
ference was seen at calf between 
the antero-lateral and posterior 
region (B)
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of posterior muscles and a relative sparing of quadriceps 
in the thighs, while in the calves, all muscles appeared 
to be similarly involved. This pattern has not been previ-
ously described in other acquired and genetic neuropathies. 
Indeed, patients affected by chronic inflammatory demyeli-
nating polyneuropathy had fat infiltration both at biceps fem-
oris and quadriceps [43] while in CMT1A, a predominant 
degeneration of antero-lateral compartments of calves was 
reported [40]. Therefore, although this observation warrants 
further confirmation in larger cohorts, it may be a clue to 
suspect ATTRv amyloidosis in patients with unexplained 
axonal neuropathy and, maybe in the future, to help differen-
tiating ATTRv amyloidosis from other genetic and acquired 
neuropathies.

Our study has some limitations. First, we recruited mostly 
ATTRv patients with mild and moderate neuropathy, while 
the more advanced stages of the disease were underrepre-
sented. Second, a muscle biopsy was not performed in any 
case. Therefore, we cannot rule out the presence of a coex-
isting myopathy. However, needle EMG was available for 
n = 17 patients and did not show myopathic changes in any 
of them. Also, amyloid myopathy is infrequent in previous 
case series [44]. Third, although the time required for muscle 
MRI was limited to 1 hour and was mostly well tolerated by 
all subjects, patients with more advanced neuropathy showed 
lower tolerance of a prolonged supine position, which partly 
explains their lower recruitment. However, in general, good 
collaboration from the patient was fundamental to obtain 
images suitable to quantitative analysis. Hopefully, in the 
near future compressed sensing and parallel imaging will 
allow to shorten the acquisition time making this evaluation 
easier to perform.

Longitudinal studies are warranted to assess the role of 
qMRI as noninvasive, objective, and sensitive biomarker 
for the diagnosis and monitoring over time of ATTRv-PN 
patients, especially in presymptomatic and early sympto-
matic stages of the disease.
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