80 research outputs found
Recommended from our members
A multiregion assessment of observed changes in the areal extent of temperature and precipitation extremes
This study examines trends in the area affected by temperature and precipitation extremes across five large-scale regions using the climate extremes index (CEI) framework. Analyzing changes in temperature and precipitation extremes in terms of areal fraction provides information from a different perspective and can be useful for climate monitoring. Trends in five temperature and precipitation components are analyzed, calculated using a new method based on standard extreme indices. These indices, derived from daily meteorological station data, are obtained from two global land-based gridded extreme indices datasets. The four continental-scale regions of Europe, North America, Asia, and Australia are analyzed over the period from 1951 to 2010, where sufficient data coverage is available. These components are also computed for the entire Northern Hemisphere, providing the first CEI results at the hemispheric scale. Results show statistically significant increases in the percentage area experiencing much-above-average warm days and nights and much-below-average cool days and nights for all regions, with the exception of North America for maximum temperature extremes. Increases in the area affected by precipitation extremes are also found for the Northern Hemisphere regions, particularly Europe and North America
Recommended from our members
A multiregion model evaluation and attribution study of historical changes in the area affected by temperature and precipitation extremes
The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario
Recommended from our members
Understanding the role of sea surface temperature-forcing for variability in global temperature and precipitation extremes
The oceans are a well-known source of natural variability in the climate system, although their ability to account for inter-annual variations of temperature and precipitation extremes over land remains unclear. In this study, the role of sea-surface temperature (SST)-forcing is investigated for variability and trends in a range of commonly used temperature and precipitation extreme indices over the period 1959 to 2013. Using atmospheric simulations forced by observed SST and sea-ice concentrations (SIC) from three models participating in the Climate of the Twentieth Century Plus (C20C+) Project, results show that oceanic boundary conditions drive a substantial fraction of inter-annual variability in global average temperature extreme indices, as well as, to a lower extent, for precipitation extremes. The observed trends in temperature extremes are generally well captured by the SST-forced simulations although some regional features such as the lack of warming in daytime warm temperature extremes over South America are not reproduced in the model simulations. Furthermore, the models simulate too strong increases in warm day frequency compared to observations over North America. For extreme precipitation trends, the accuracy of the simulated trend pattern is regionally variable, and a thorough assessment is difficult due to the lack of locally significant trends in the observations. This study shows that prescribing SST and SIC holds potential predictability for extremes in some (mainly tropical) regions at the inter-annual time-scale
Recommended from our members
Uncertainty in simulating twentieth century West African precipitation trends: the role of anthropogenic aerosol emissions
Anthropogenic aerosol emissions from North America and Europe have strong effects on the decadal variability of the West African monsoon. Anthropogenic aerosol effective radiative forcing is model dependent, but the impact of such uncertainty on the simulation of long-term West African monsoon variability is unknown. We use an ensemble of simulations with HadGEM3-GC3.1 that span the most recent estimates in simulated anthropogenic aerosol effective radiative forcing. We show that uncertainty in anthropogenic aerosol radiative forcing leads to significant uncertainty at simulating multi-decadal trends in West African precipitation. At the large scale, larger forcing leads to a larger decrease in the interhemispheric temperature gradients, in temperature over both the North Atlantic Ocean and northern Sahara. There are also differences in dynamic changes specific to the West African monsoon (locations of the Saharan heat low and African Easterly Jet, of the strength of the West African westerly jet, and of African Easterly Wave activity). We also assess effects on monsoon precipitation characteristics and temperature. We show that larger aerosol forcing results in a decrease of the number of rainy days and of heavy and extreme precipitation events and warm spells. However, simulated changes in onset and demise dates do not appear to be sensitive to the magnitude of aerosol forcing. Our results demonstrate the importance of reducing the uncertainty in anthropogenic aerosol forcing for understanding and predicting multi-decadal variability in the West African monsoon
Recommended from our members
Sensitivity of historical climate simulations to uncertain aerosol forcing
The relative importance of anthropogenic aerosol in decadal variations of historical climate is uncertain, largely due to uncertainty in aerosol radiative forcing. We analyse a novel large ensemble of simulations with HadGEM3-GC3.1 for 1850-2014, where anthropogenic aerosol and precursor emissions are scaled to sample a wide range of historical aerosol radiative forcing with present-day values ranging from -0.38 to -1.50 Wm-2. Five ensemble members are run for each of five aerosol scaling factors. Decadal variations in surface temperatures are strongly sensitive to aerosol forcing, particularly between 1950 and 1980. Post-1980, trends are dominated by greenhouse-gas forcing, with much lower sensitivity to aerosol emission differences. Most realisations with aerosol forcing more negative than about -1 Wm-2 simulate stronger cooling trends in the mid-twentieth century compared to observations, while the simulated warming post-1980 always exceeds observed warming, likely due to a warm bias in the Transient Climate Response in HadGEM3-GC3.1
Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry-climate models
Studies have recently reported statistically significant relationships between observed year-to-year spring Antarctic ozone variability and the Southern Hemisphere Annular Mode and surface temperatures in spring-summer. This study investigates whether current chemistry-climate models (CCMs) can capture these relationships, in particular, the connection between November total column ozone (TCO) and Australian summer surface temperatures, where years with anomalously high TCO over the Antarctic polar cap tend to be followed by warmer summers. The interannual ozone-temperature teleconnection is examined over the historical period in the observations and simulations from the Whole Atmosphere Community Climate Model (WACCM) and nine other models participating in the Chemistry-Climate Model Initiative (CCMI). There is a systematic difference between the WACCM experiments forced with prescribed observed sea surface temperatures (SSTs) and those with an interactive ocean. Strong correlations between TCO and Australian temperatures are only obtained for the uncoupled experiment, suggesting that the SSTs could be important for driving both variations in Australian temperatures and the ozone hole, with no causal link between the two. Other CCMI models also tend to capture this relationship with more fidelity when driven by observed SSTs, though additional research and targeted modelling experiments are required to determine causality and further explore the role of model biases and observational uncertainty. The results indicate that CCMs can reproduce the relationship between spring ozone and summer Australian climate reported in observational studies, suggesting that incorporating ozone variability could improve seasonal predictions, however more work is required to understand the difference between the coupled and uncoupled simulations
Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry-climate models
Studies have recently reported statistically significant relationships between observed year-to-year spring Antarctic ozone variability and the Southern Hemisphere Annular Mode and surface temperatures in spring-summer. This study investigates whether current chemistry-climate models (CCMs) can capture these relationships, in particular, the connection between November total column ozone (TCO) and Australian summer surface temperatures, where years with anomalously high TCO over the Antarctic polar cap tend to be followed by warmer summers. The interannual ozone-temperature teleconnection is examined over the historical period in the observations and simulations from the Whole Atmosphere Community Climate Model (WACCM) and nine other models participating in the Chemistry-Climate Model Initiative (CCMI). There is a systematic difference between the WACCM experiments forced with prescribed observed sea surface temperatures (SSTs) and those with an interactive ocean. Strong correlations between TCO and Australian temperatures are only obtained for the uncoupled experiment, suggesting that the SSTs could be important for driving both variations in Australian temperatures and the ozone hole, with no causal link between the two. Other CCMI models also tend to capture this relationship with more fidelity when driven by observed SSTs, though additional research and targeted modelling experiments are required to determine causality and further explore the role of model biases and observational uncertainty. The results indicate that CCMs can reproduce the relationship between spring ozone and summer Australian climate reported in observational studies, suggesting that incorporating ozone variability could improve seasonal predictions, however more work is required to understand the difference between the coupled and uncoupled simulations
Recommended from our members
Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century
Anthropogenic aerosols are dominant drivers of historical monsoon rainfall change. However, large uncertainties in the radiative forcing associated with anthropogenic aerosol emissions, and the dynamical response to this forcing, lead to uncertainty in the simulated monsoon response. We use historical simulations in which aerosol emissions are scaled by factors from 0.2 to 1.5 to explore the monsoon sensitivity to aerosol forcing uncertainty (−0.38 W m−2 to −1.50 W m−2). Hemispheric asymmetry in emissions generates a strong relationship between scaling factor and both hemispheric temperature contrast and meridional location of tropical rainfall. Increasing the scaling from 0.2 to 1.5 reduces the global monsoon area by 3 % and the global monsoon intensity by 2 % over the period 1950–2014, and switches the dominant influence on the 1950–1980 monsoon rainfall trend between greenhouse gas and aerosol. Regionally, aerosol scaling has a pronounced effect on Northern Hemisphere monsoon rainfall
Recommended from our members
The timing of anthropogenic emergence in simulated climate extremes
Determining the time of emergence of climates altered from their natural state by anthropogenic influences can help inform the development of adaptation and mitigation strategies to climate change. Previous studies have examined the time of emergence of climate averages. However, at the global scale, the emergence of changes in extreme events, which have the greatest societal impacts, has not been investigated before. Based on state-of-the-art climate models, we show that temperature extremes generally emerge slightly later from their quasi-natural climate state than seasonal means, due to greater variability in extremes. Nevertheless, according to model evidence, both hot and cold extremes have already emerged across many areas. Remarkably, even precipitation extremes that have very large variability are projected to emerge in the coming decades in Northern Hemisphere winters associated with a wettening trend. Based on our findings we expect local temperature and precipitation extremes to already differ significantly from their previous quasi-natural state at many locations or to do so in the near future. Our findings have implications for climate impacts and detection and attribution studies assessing observed changes in regional climate extremes by showing whether they will likely find a fingerprint of anthropogenic climate change
Recommended from our members
Historical simulations with HadGEM3-GC3.1 for CMIP6
We describe and evaluate historical simulations which use the third Hadley Centre Global Environment Model in the Global Coupled configuration 3.1 (HadGEM3-GC3.1) model and which form part of the UK's contribution to the sixth Coupled Model Intercomparison Project, CMIP6. These simulations, run at two resolutions, respond to historically evolving forcings such as greenhouse gases, aerosols, solar irradiance, volcanic aerosols, land use, and ozone concentrations. We assess the response of the simulations to these historical forcings and compare against the observational record. This includes the evolution of global mean surface temperature, ocean heat content, sea ice extent, ice sheet mass balance, permafrost extent, snow cover, North Atlantic sea surface temperature and circulation, and decadal precipitation. We find that the simulated time evolution of global mean surface temperature broadly follows the observed record but with important quantitative differences which we find are most likely attributable to strong effective radiative forcing from anthropogenic aerosols and a weak pattern of sea surface temperature response in the low to middle latitudes to volcanic eruptions. We also find evidence that anthropogenic aerosol forcings play a role in driving the Atlantic Multidecadal Variability and the Atlantic Meridional Overturning Circulation, which are key features of the North Atlantic ocean. Overall, the model historical simulations show many features in common with the observed record over the period 1850–2014 and so provide a basis for future in-depth study of recent climate change
- …