110 research outputs found

    PASSPORT-seq: A Novel High-Throughput Bioassay to Functionally Test Polymorphisms in Micro-RNA Target Sites

    Get PDF
    Next-generation sequencing (NGS) studies have identified large numbers of genetic variants that are predicted to alter miRNA-mRNA interactions. We developed a novel high-throughput bioassay, PASSPORT-seq, that can functionally test in parallel 100s of these variants in miRNA binding sites (mirSNPs). The results are highly reproducible across both technical and biological replicates. The utility of the bioassay was demonstrated by testing 100 mirSNPs in HEK293, HepG2, and HeLa cells. The results of several of the variants were validated in all three cell lines using traditional individual luciferase assays. Fifty-five mirSNPs were functional in at least one of three cell lines (FDR ≤ 0.05); 11, 36, and 27 of them were functional in HEK293, HepG2, and HeLa cells, respectively. Only four of the variants were functional in all three cell lines, which demonstrates the cell-type specific effects of mirSNPs and the importance of testing the mirSNPs in multiple cell lines. Using PASSPORT-seq, we functionally tested 111 variants in the 3' UTR of 17 pharmacogenes that are predicted to alter miRNA regulation. Thirty-three of the variants tested were functional in at least one cell line

    Pharmacogenomics Factors Influencing the Effect of Risperidone on Prolactin Levels in Thai Pediatric Patients With Autism Spectrum Disorder

    Get PDF
    We investigated the association between genetic variations in pharmacodynamic genes and risperidone-induced increased prolactin levels in children and adolescents with autism spectrum disorder (ASD). In a retrospective study, variants of pharmacodynamic genes were analyzed in 124 ASD patients treated with a risperidone regimen for at least 3 months. To simplify genotype interpretation, we created an algorithm to calculate the dopamine D2 receptor (DRD2) gene genetic risk score. There was no relationship between prolactin levels and single SNPs. However, the H1/H3 diplotype (A2/A2-Cin/Cin-A/G) of DRD2/ankyrin repeat and kinase domain containing 1 (ANKK1) Taq1A, DRD2 -141C indel, and DRD2 -141A>G, which had a genetic risk score of 5.5, was associated with the highest median prolactin levels (23 ng/ml). As the dose-corrected plasma levels of risperidone, 9-OH-risperidone, and the active moiety increased, prolactin levels in patients carrying the H1/H3 diplotype were significantly higher than those of the other diplotypes. DRD2 diplotypes showed significantly high prolactin levels as plasma risperidone levels increased. Lower levels of prolactin were detected in patients who responded to risperidone. This is the first system for describing DRD2 haplotypes using genetic risk scores based on their protein expression. Clinicians should consider using pharmacogenetic-based decision-making in clinical practice to prevent prolactin increase

    Age-Related Changes in MicroRNA Expression and Pharmacogenes in Human Liver

    Get PDF
    Developmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric [1-17 years], and adult [28-80 years]; n = 30 each). In all, 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g., hsa-miR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n = 10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1,000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition

    Relationship between CYP2D6 genotype, activity score and phenotype in a pediatric Thai population treated with risperidone

    Get PDF
    Recently, the Clinical Pharmacogenetics Implementation Consortium (CPIC) have revised recommendations for the translation of CYP2D6 genotype to phenotype. Changes affect phenotype grouping, as well as the value used to calculate activity score for the CYP2D6*10 allele to better reflect the substantially decreased activity of this allele which is the most frequent allele found in Asian populations. This study aimed to evaluate whether the lower value for CYP2D6*10 as recommended, and the revised phenotype groupings improve the relationship between CYP2D6 genotype and risperidone measures. One hundred and ninety-nine children and adolescents with autism treated with a risperidone-based regimen for at least four weeks were included. CYP2D6 genotype was determined using the Luminex xTAG CYP2D6 Kit assay and translated into phenotype using different translation methods. Plasma concentrations of risperidone and 9-hydroxyrisperidone were measured using LC/MS/MS. Plasma levels of risperidone, risperidone concentration/dose ratio, and risperidone/9-hydroxyrisperidone ratio in patients with an activity score1 (P valu

    Variants in the CYP2B6 3′UTR Alter In Vitro and In Vivo CYP2B6 Activity: Potential Role of MicroRNAs

    Get PDF
    CYP2B6*6 and CYP2B6*18 are the most clinically important variants causing reduced CYP2B6 protein expression and activity. However, these variants do not account for all variability in CYP2B6 activity. Emerging evidence has shown that genetic variants in the 3′UTR may explain variable drug response by altering microRNA regulation. Five 3′UTR variants were associated with significantly altered efavirenz AUC0-48 (8-OH-EFV/EFV) ratios in healthy human volunteers. The rs70950385 (AG>CA) variant, predicted to create a microRNA binding site for miR-1275, was associated with a 33% decreased CYP2B6 activity among normal metabolizers (AG/AG vs. CA/CA (P < 0.05)). In vitro luciferase assays were used to confirm that the CA on the variant allele created a microRNA binding site causing an 11.3% decrease in activity compared to the AG allele when treated with miR-1275 (P = 0.0035). Our results show that a 3′UTR variant contributes to variability in CYP2B6 activity

    Identification of Novel CYP2D7-2D6 Hybrids: Non-Functional and Functional Variants

    Get PDF
    Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five-kilobyte-long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79), intron 2 (CYP2D6*80), and intron 5 (CYP2D6*67). A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5′-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B). Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]). Quantitative copy number determination, sequence analyses, and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc), but may also cause results that may interfere with the genotype determination. Detection of hybrid events, “single” and tandem, will contribute to more accurate phenotype prediction from genotype data

    PharmVar and the Landscape of Pharmacogenetic Resources

    Get PDF
    Testing, reporting and translation of pharmacogenetics (PGx) into clinical recommendations requires vast knowledge resources. The Pharmacogene Variation (PharmVar) Consortium catalogs pharmacogene variation and provides standardized nomenclature that is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetic Implementation Consortium (CPIC). PharmVar allele definitions are also widely used for test design and reporting. This perspective paints a landscape of PGx resources that are needed to facilitate implementation of PGx into clinical practice

    Impact of CYP2C:TG Haplotype on CYP2C19 substrates clearance in vivo, protein content, and in vitro activity

    Full text link
    A novel haplotype composed of two non-coding variants, CYP2C18 NM_000772.3:c.*31T (rs2860840) and NM_000772.2:c.819+2182G (rs11188059), referred to as “CYP2C:TG,” was recently associated with ultrarapid metabolism of various CYP2C19 substrates. As the underlying mechanism and clinical relevance of this effect remain uncertain, we analyzed existing in vivo and in vitro data to determine the magnitude of the CYP2C:TG haplotype effect. We assessed variability in pharmacokinetics of CYP2C19 substrates, including citalopram, sertraline, voriconazole, omeprazole, pantoprazole, and rabeprazole in 222 healthy volunteers receiving one of these six drugs. We also determined its impact on CYP2C8, CYP2C9, CYP2C18, and CYP2C19 protein abundance in 135 human liver tissue samples, and on CYP2C18/CYP2C19 activity in vitro using N-desmethyl atomoxetine formation. No effects were observed according to CYP2C:TG haplotype or to CYP2C19*1+TG alleles (i.e., CYP2C19 alleles containing the CYP2C:TG haplotype). In contrast, CYP2C19 intermediate (e.g., CYP2C19*1/*2) and poor metabolizers (e.g., CYP2C19*2/*2) showed significantly higher exposure in vivo, lower CYP2C19 protein abundance in human liver microsomes, and lower activity in vitro compared with normal, rapid (i.e., CYP2C19*1/*17), and ultrarapid metabolizers (i.e., CYP2C19*17/*17). Moreover, a tendency toward lower exposure was observed in ultrarapid metabolizers compared with rapid metabolizers and normal metabolizers. Furthermore, when the CYP2C19*17 allele was present, CYP2C18 protein abundance was increased suggesting that genetic variation in CYP2C19 may be relevant to the overall metabolism of certain drugs by regulating not only its expression levels, but also those of CYP2C18. Considering all available data, we conclude that there is insufficient evidence supporting clinical CYP2C:TG testing to inform drug therapyP.S.-C. is financed by Universidad Autónoma de Madrid (FPIUAM, 2021). P.Z. is financed by Universidad Autónoma de Madrid, Margarita Salas contract, grants for the requalification of the Spanish university system. A.R.-L. and E.G.-I. contracts are financed by Programa Investigo (NextGenerationEU funds of the Recovery and Resilience Facility), fellowship numbers 2022-C23.I01.P03. S0020–0000031 and 09-PIN1-00015.6/2022. Human liver tissue samples were obtained through the Liver Tissue Cell Distribution System, Minneapolis, MN, and Pittsburgh, PA, which was funded by NIH Contract #HHSN276201200017C. The proteomics part of the work was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) Grant R01.HD08129

    Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153095/1/cts12692_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153095/2/cts12692-sup-0001-Supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153095/3/cts12692.pd

    Impact of CYP2D6 genotype on amitriptyline efficacy for the treatment of diabetic peripheral neuropathy : a pilot study

    Get PDF
    AIM : Therapy with low-dose amitriptyline is commonly used to treat painful diabetic peripheral neuropathy. There is a knowledge gap, however, regarding the role of variable CYP2D6-mediated drug metabolism and side effects (SEs). We aimed to generate pilot data to demonstrate that SEs are more frequent in patients with variant CYP2D6 alleles. METHOD : To that end, 31 randomly recruited participants were treated with low-dose amitriptyline for painful diabetic peripheral neuropathy and their CYP2D6 gene sequenced. RESULTS : Patients with predicted normal or ultra-rapid metabolizer phenotypes presented with less SEs compared with individuals with decreased CYP2D6 activity. CONCLUSION : Hence, CYP2D6 genotype contributes to treatment outcome and may be useful for guiding drug therapy. Future investigations in a larger patient population are planned to support these preliminary findings.The South African Medical Research Council, the National Research Foundation of South Africa, the National Health Laboratory Services and the Institute for Cellular and Molecular Medicine, University of Pretoria. http://www.futuremedicine.com/loi/pgshj2018Consumer ScienceImmunologyInternal MedicinePharmacolog
    corecore