13 research outputs found

    CARD9<sup>+</sup> microglia promote antifungal immunity via IL-1ÎČ- and CXCL1-mediated neutrophil recruitment

    Get PDF
    This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Disease, National Institutes of Health, as well as NIH grants awarded to TMH (R01 093808), SGF (R01AI124566) and SRL (R01CA161373). Additional funding was provided by the Burroughs Wellcome Fund (awarded to TMH), the Wellcome Trust (102705, 097377; awarded to GDB), the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1; awarded to GDB). The authors additionally thank Celeste Huaman for care and screening of the Malt1 793 -/- mice.Peer reviewedPostprin

    Biological Earth observation with animal sensors

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change

    The Movebank system for studying global animal movement and demography

    No full text
    Quantifying movement and demographic events of free-ranging animals is fundamental to studying their ecology, evolution and conservation. Technological advances have led to an explosion in sensor-based methods for remotely observing these phenomena. This transition to big data creates new challenges for data management, analysis and collaboration. We present the Movebank ecosystem of tools used by thousands of researchers to collect, manage, share, visualize, analyse and archive their animal tracking and other animal-borne sensor data. Users add sensor data through file uploads or live data streams and further organize and complete quality control within the Movebank system. All data are harmonized to a data model and vocabulary. The public can discover, view and download data for which they have been given access to through the website, the Animal Tracker mobile app or by API. Advanced analysis tools are available through the EnvDATA System, the MoveApps platform and a variety of user-developed applications. Data owners can share studies with select users or the public, with options for embargos, licenses and formal archiving in a data repository. Movebank is used by over 3,100 data owners globally, who manage over 6 billion animal location and sensor measurements across more than 6,500 studies, with thousands of active tags sending over 3 million new data records daily. These data underlie >700 published papers and reports. We present a case study demonstrating the use of Movebank to assess life-history events and demography, and engage with citizen scientists to identify mortalities and causes of death for a migratory bird. A growing number of researchers, government agencies and conservation organizations use Movebank to manage research and conservation projects and to meet legislative requirements. The combination of historic and new data with collaboration tools enables broad comparative analyses and data acquisition and mapping efforts. Movebank offers an integrated system for real-time monitoring of animals at a global scale and represents a digital museum of animal movement and behaviour. Resources and coordination across countries and organizations are needed to ensure that these data, including those that cannot be made public, remain accessible to future generations.DATA AVAILABILITY STATEMENT : White stork tracking and mortality data: Publicly available on Movebank in the ‘LifeTrack White Stork’ studies for Armenia (Study ID 10236270, Flack et al., 2015), Bavaria (ID 24442409, Fiedler, Flack, SchĂ€fle, et al., 2019), Greece (ID 10449535, Flack et al., 2015), Kosova (ID 175720577, Maxhuni et al., data to be published upon paper acceptance), Moscow (ID 10596067, Fiedler, Flack, SchĂ€fle, et al., 2019), Oberschwaben (ID 212096177, Fiedler et al., 2019b), Poland ECG (ID 25166516), Rheinland-Pfalz (ID 76367850, Fiedler, Hilsendegen, et al., 2019), Sicily (ID 79206236, Grasso et al., data to be published upon paper acceptance) and SW Germany (ID 21231406, Fiedler, Leppelsack, et al., 2019). Tracking data participating in the AAMA (Figure 5a): See data access instructions at www.movebank.org/cms/movebank-content/arctic-animal-movement-archive. MoveApps Apps and links to source code are publicly available from https://moveapps.org.Deutsches Zentrum fĂŒr Luft- und Raumfahrt; Deutsche Forschungsgemeinschaft; Directorate for Biological Sciences; Knobloch Family Foundation; Division of Integrative Organismal Systems; Division of Biological Infrastructure; National Aeronautics and Space Administration; Ministerium fĂŒr Wissenschaft, Forschung und Kunst Baden-WĂŒrttemberg.http://www.wileyonlinelibrary.com/journal/mee3hj2022Veterinary Tropical Disease

    Diapedesis-Induced Integrin Signaling via LFA-1 Facilitates Tissue Immunity by Inducing Intrinsic Complement C3 Expression in Immune Cells

    No full text
    Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity

    Eosinophils are an integral component of the pulmonary granulocyte response in Tuberculosis and promote host resistance in mice

    Get PDF
    Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice

    Upregulation of CD47 Is a Host Checkpoint Response to Pathogen Recognition

    No full text
    Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 “don’t eat me” signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis. Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents

    Upregulation of CD47 Is a Host Checkpoint Response to Pathogen Recognition.

    No full text
    It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile
    corecore