10,067 research outputs found

    Heterotic Anomaly Cancellation in Five Dimensions

    Get PDF
    We study the constraints on five-dimensional N=1 heterotic M-theory imposed by a consistent anomaly-free coupling of bulk and boundary theory. This requires analyzing the cancellation of triangle gauge anomalies on the four-dimensional orbifold planes due to anomaly inflow from the bulk. We find that the semi-simple part of the orbifold gauge groups and certain U(1) symmetries have to be free of quantum anomalies. In addition there can be several anomalous U(1) symmetries on each orbifold plane whose anomalies are cancelled by a non-trivial variation of the bulk vector fields. The mixed U(1) non-abelian anomaly is universal and there is at most one U(1) symmetry with such an anomaly on each plane. In an alternative approach, we also analyze the coupling of five-dimensional gauged supergravity to orbifold gauge theories. We find a somewhat generalized structure of anomaly cancellation in this case which allows, for example, non-universal mixed U(1) gauge anomalies. Anomaly cancellation from the perspective of four-dimensional N=1 effective actions obtained from E_8xE_8 heterotic string- or M-theory by reduction on a Calabi-Yau three-fold is studied as well. The results are consistent with the ones found for five-dimensional heterotic M-theory. Finally, we consider some related issues of phenomenological interest such as model building with anomalous U(1) symmetries, Fayet-Illiopoulos terms and threshold corrections to gauge kinetic functions.Comment: 46 pages, Late

    Reducing the expense of ear wax

    Get PDF
    Ear wax is one of the commonest presenting complaints both in Ear Nose and Throat surgery and in General Practice. The commonest treatment by far given for this condition is Arachis oil (CerumolÂź). Results from various studies however show that this appears not to be the most effective treatment and that cheaper options exist which may drastically reduce the costs incurred by the Health Department in this respect. We hereby outline the advantages of the use of 0.9% saline drops in the treatment of ear wax.peer-reviewe

    Failure of conductance quantization in two-dimensional topological insulators due to non-magnetic impurities

    Full text link
    Despite topological protection and the absence of magnetic impurities, two-dimensional topological insulators display quantized conductance only in surprisingly short channels, which can be as short as 100 nm for atomically thin materials. We show that the combined action of short-range nonmagnetic impurities located near the edges and on site electron-electron interactions effectively creates noncollinear magnetic scatterers, and, hence, results in strong backscattering. The mechanism causes deviations from quantization even at zero temperature and for a modest strength of electron-electron interactions. Our theory provides a straightforward conceptual framework to explain experimental results, especially those in atomically thin crystals, plagued with short-range edge disorder.Comment: 8 pages, 9 figures, 5 appendice

    Non-local transport and the hydrodynamic shear viscosity in graphene

    Get PDF
    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultra-high mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of non-local resistances in multi-terminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.Comment: 12 pages, 4 multi-panel figure

    Multiple Transactions Model: A Panel Data Approach to Estimate Housing Market Indices

    Get PDF
    In this paper, a multiple transactions model with a panel data approach is used to estimate housing market indices. The multiple transactions model keeps the same features of the repeat transactions index model (i.e., tracking the price appreciation of same houses). However, the multiple transactions model overcomes the shortcomings of the repeat transactions model by avoiding the correlated error terms. The indicative empirical analysis on a small sample of actual house transaction data demonstrates that the proposed multiple transactions model is superior to the repeat transactions model in terms of index variance, robustness of estimate, index revision volatility, and out-of-sample prediction of individual house prices.

    Spin Freezing in the Spin Liquid Compound FeAl2O4

    Full text link
    Spin freezing in the AA-site spinel FeAl2_2O4_4 which is a spin liquid candidate is studied using remnant magnetization and nonlinear magnetic susceptibility and isofield cooling and heating protocols. The remnant magnetization behavior of FeAl2_2O4_4 differs significantly from that of a canonical spin glass which is also supported by analysis of the nonlinear magnetic susceptibility term χ3(T)\chi_3 (T). Through the power-law analysis of χ3(T)\chi_3 (T), a spin-freezing temperature, TgT_g = 11.4±\pm0.9~K and critical exponent, Îł\gamma = 1.48±\pm0.59 are obtained. Cole-Cole analysis of magnetic susceptibility shows the presence of broad spin relaxation times in FeAl2_2O4_4, however, the irreversible dc susceptibility plot discourages an interpretation based on conventional spin glass features. The magnetization measured using the cooling-and-heating-in-unequal-fields protocol brings more insight to the magnetic nature of this frustrated magnet and reveals unconventional glassy behaviour. Combining our results, we arrive at the conclusion that the present sample of FeAl2_2O4_4 consists of a majority spin liquid phase with "glassy" regions embedded.Comment: 5 pages, 6 figs, 2-column, Accepted to Phys. Rev.

    Structural anomalies, spin transitions and charge disproportionation in LnCoO3

    Full text link
    The diamagnetic-paramagnetic and insulator-metal transitions in LnCoO3 perovskites (Ln = La, Y, rare earths) are reinterpreted and modeled as a two-level excitation process. In distinction to previous models, the present approach can be characterized as a LS-HS-IS (low-high-intermediate spin) scenario. The first level is the local excitation of HS Co3+ species in the LS ground state. The second excitation is based on the interatomic electron transfer between the LS/HS pairs, leading finally to a stabilization of the metallic phase based on IS Co3+. The model parameters have been quantified for Ln = La, Pr and Nd samples using the powder neutron diffraction on the thermal expansion of Co-O bonds, that is associated with the two successive spin transitions. The same model is applied to interpret the magnetic susceptibility of LaCoO3 and YCoO3.Comment: 52.Conference on Magnetism and Magnetic Materials, November 2007, Tamp
    • 

    corecore