16,501 research outputs found

    Analytical approach to directed sandpile models on the Apollonian network

    Full text link
    We investigate a set of directed sandpile models on the Apollonian network, which are inspired on the work by Dhar and Ramaswamy (PRL \textbf{63}, 1659 (1989)) for Euclidian lattices. They are characterized by a single parameter qq, that restricts the number of neighbors receiving grains from a toppling node. Due to the geometry of the network, two and three point correlation functions are amenable to exact treatment, leading to analytical results for the avalanche distributions in the limit of an infinite system, for q=1,2q=1,2. The exact recurrence expressions for the correlation functions are numerically iterated to obtain results for finite size systems, when larger values of qq are considered. Finally, a detailed description of the local flux properties is provided by a multifractal scaling analysis.Comment: 7 pages in two-column format, 10 illustrations, 5 figure

    Preparation and characterization of methacrylate hydrogels for zeta potential control

    Get PDF
    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs

    Memory effects on the statistics of fragmentation

    Full text link
    We investigate through extensive molecular dynamics simulations the fragmentation process of two-dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment to the radial component of the particles' velocities. We study the effect of temperature of the thermalized system as well as the influence of the impact energy of the ``explosion'' event on the statistics of mass fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz F(m)mαexp[(m/m0)γ]F(m)\propto m^{-\alpha}\exp{[-(m/m_0)^\gamma]}, where mm is the mass, m0m_0 and γ\gamma are cutoff parameters, and α\alpha is a scaling exponent that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic scaling exponent α\alpha for each macroscopic phase of the thermalized system, i.e., that the non-universal behavior of the fragmentation process is dictated by the state of the system before it breaks down.Comment: 5 pages, 8 figure

    Model for erosion-deposition patterns

    Full text link
    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.Comment: 8 pages, 12 figures, submitted to Phys. Rev.

    On bare masses in time-symmetric initial-value solutions for two black holes

    Full text link
    The Brill-Lindquist time-symmetric initial-value solution for two uncharged black holes is rederived using the Hamiltonian constraint equation with Dirac delta distributions as a source for the binary black-hole field. The bare masses of the Brill-Lindquist black holes are introduced in a way which is applied, after straightforward modification, to the Misner-Linquist binary black-hole solution.Comment: LaTeX, 4 page

    Non-nequilibrium model on Apollonian networks

    Full text link
    We investigate the Majority-Vote Model with two states (1,+1-1,+1) and a noise qq on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter qq. We also studies de effect of redirecting a fraction pp of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν\gamma/\nu, β/ν\beta/\nu, and 1/ν1/\nu for several values of rewiring probability pp. The critical noise was determined qcq_{c} and UU^{*} also was calculated. The effective dimensionality of the system was observed to be independent on pp, and the value Deff1.0D_{eff} \approx1.0 is observed for these networks. Previous results on the Ising model in Apollonian Networks have reported no presence of a phase transition. Therefore, the results present here demonstrate that the Majority-Vote Model belongs to a different universality class as the equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure

    Physical regularization for the spin-1/2 Aharonov-Bohm problem in conical space

    Full text link
    We examine the bound state and scattering problem of a spin-one-half particle undergone to an Aharonov-Bohm potential in a conical space in the nonrelativistic limit. The crucial problem of the \delta-function singularity coming from the Zeeman spin interaction with the magnetic flux tube is solved through the self-adjoint extension method. Using two different approaches already known in the literature, both based on the self-adjoint extension method, we obtain the self-adjoint extension parameter to the bound state and scattering scenarios in terms of the physics of the problem. It is shown that such a parameter is the same for both situations. The method is general and is suitable for any quantum system with a singular Hamiltonian that has bound and scattering states.Comment: Revtex4, 5 pages, published versio

    Numerical modeling of the wind flow over a transverse dune

    Get PDF
    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\em{separation bubble}} --- displays a surprisingly strong dependence on the wind shear velocity, uu_{\ast}: it is nearly independent of uu_{\ast} for shear velocities within the range between 0.20.2\,ms and $0.8\,$ms but increases linearly with uu_{\ast} for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if uu_{\ast} is larger than approximately 0.390.39\,ms, whereas a larger value of $u_{\ast}$ (about $0.49\,$ms) is required to initiate this reverse transport.Comment: 11 pages, 8 figure

    Rain, power laws, and advection

    Full text link
    Localized rain events have been found to follow power-law size and duration distributions over several decades, suggesting parallels between precipitation and seismic activity [O. Peters et al., PRL 88, 018701 (2002)]. Similar power laws are generated by treating rain as a passive tracer undergoing advection in a velocity field generated by a two-dimensional system of point vortices.Comment: 7 pages, 4 figure
    corecore