130 research outputs found

    Fluoride content in children's dentifrices marketed in Lima, Peru

    Get PDF
    The aim of the present study was to determine the concentration of total fluoride (TF) and total soluble fluoride (TSF) in children's dentifrices marketed in the city of Lima, Peru. Three samples of 23 dentifrices (4 without fluoride and 19 with fluoride) were purchased in different pharmacies in Lima, Peru. The TF and TSF concentrations found in the dentifrices were determined by ion-selective electrode, expressed in ppm F (μg F/g of dentifrice). The TF concentration in the majority of the fluoride toothpastes matched that shown on the label, except for one declared as 1450 ppm F by the manufacturer, whereas only 515.1 ppm F was found. The concentration of TSF found in the fluoride toothpastes ranged from 457.5 to 1134.8 ppm F. All the dentifrices were formulated with silica, but one also presented calcium carbonate. In conclusion, 83% of the children's dentifrices marketed in Lima, Peru, were fluoridated, but only 53% contained a TSF concentration greater than 1000 ppm F, the minimum concentration required to provide an anticaries effect33COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESnão te

    Nonextensive Statistical Mechanics Application to Vibrational Dynamics of Protein Folding

    Full text link
    The vibrational dynamics of protein folding is analyzed in the framework of Tsallis thermostatistics. The generalized partition functions, internal energies, free energies and temperature factor (or Debye-Waller factor) are calculated. It has also been observed that the temperature factor is dependent on the non-extensive parameter q which behaves like a scale parameter in the harmonic oscillator model. As q1q\to 1, we also show that these approximations agree with the result of Gaussian network model.Comment: 8 pages, 2 figure

    Numerically generated quasi-equilibrium orbits of black holes: Circular or eccentric?

    Get PDF
    We make a comparison between results from numerically generated, quasi-equilibrium configurations of compact binary systems of black holes in close orbits, and results from the post-Newtonian approximation. The post-Newtonian results are accurate through third PN order (O(v/c)^6 beyond Newtonian gravity), and include rotational and spin-orbit effects, but are generalized to permit orbits of non-zero eccentricity. Both treatments ignore gravitational radiation reaction. The energy E and angular momentum J of a given configuration are compared between the two methods as a function of the orbital angular frequency \Omega. For small \Omega, corresponding to orbital separations a factor of two larger than that of the innermost stable orbit, we find that, if the orbit is permitted to be slightly eccentric, with e ranging from \approx 0.03 to \approx 0.05, and with the two objects initially located at the orbital apocenter (maximum separation), our PN formulae give much better fits to the numerically generated data than do any circular-orbit PN methods, including various ``effective one-body'' resummation techniques. We speculate that the approximations made in solving the initial value equations of general relativity numerically may introduce a spurious eccentricity into the orbits.Comment: 6 pages, 4 figures, to be submitted to Phys. Rev.

    Circular orbits of corotating binary black holes: comparison between analytical and numerical results

    Get PDF
    We compare recent numerical results, obtained within a ``helical Killing vector'' (HKV) approach, on circular orbits of corotating binary black holes to the analytical predictions made by the effective one body (EOB) method (which has been recently extended to the case of spinning bodies). On the scale of the differences between the results obtained by different numerical methods, we find good agreement between numerical data and analytical predictions for several invariant functions describing the dynamical properties of circular orbits. This agreement is robust against the post-Newtonian accuracy used for the analytical estimates, as well as under choices of resummation method for the EOB ``effective potential'', and gets better as one uses a higher post-Newtonian accuracy. These findings open the way to a significant ``merging'' of analytical and numerical methods, i.e. to matching an EOB-based analytical description of the (early and late) inspiral, up to the beginning of the plunge, to a numerical description of the plunge and merger. We illustrate also the ``flexibility'' of the EOB approach, i.e. the possibility of determining some ``best fit'' values for the analytical parameters by comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages, 6 figure

    A skeleton approximate solution of the Einstein field equations for multiple black-hole systems

    Full text link
    An approximate analytical and non-linear solution of the Einstein field equations is derived for a system of multiple non-rotating black holes. The associated space-time has the same asymptotic structure as the Brill-Lindquist initial data solution for multiple black holes. The system admits an Arnowitt-Deser-Misner (ADM) Hamiltonian that can particularly evolve the Brill-Lindquist solution over finite time intervals. The gravitational field of this model may properly be referred to as a skeleton approximate solution of the Einstein field equations. The approximation is based on a conformally flat truncation, which excludes gravitational radiation, as well as a removal of some additional gravitational field energy. After these two simplifications, only source terms proportional to Dirac delta distributions remain in the constraint equations. The skeleton Hamiltonian is exact in the test-body limit, it leads to the Einsteinian dynamics up to the first post-Newtonian approximation, and in the time-symmetric limit it gives the energy of the Brill-Lindquist solution exactly. The skeleton model for binary systems may be regarded as a kind of analytical counterpart to the numerical treatment of orbiting Misner-Lindquist binary black holes proposed by Gourgoulhon, Grandclement, and Bonazzola, even if they actually treat the corotating case. Along circular orbits, the two-black-hole skeleton solution is quasi-stationary and it fulfills the important property of equality of Komar and ADM masses. Explicit calculations for the determination of the last stable circular orbit of the binary system are performed up to the tenth post-Newtonian order within the skeleton model.Comment: 15 pages, 1 figure, submitted to Phys. Rev. D, 3 references added, minor correction

    Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits

    Get PDF
    Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.This work was supported by the São Paulo Research Foundation (FAPESP) (grants 2018/16389-8, 2016/04924-0, 2017/17935-3 and 2016/01128-9), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grants 422287/2018-0, 305012/2018-5, 303332/2019-0 and 300986/2018-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The research work of FJC and JMP is supported by a European Regional Development Fund cofinanced grant from the Ministry of Economy and Competitiveness (AGL2015-65104-P and PID2019-103924GB-I00), Spain

    Duodenal adipose tissue is associated with obesity in baboons (Papio sp) : a novel site of ectopic fat deposition in non-human primates

    Get PDF
    AimsEctopic fat is a recognized contributor to insulin resistance and metabolic dysfunction, while the role of fat deposition inside intestinal wall tissue remains understudied. We undertook this study to directly quantify and localize intramural fat deposition in duodenal tissue and determine its association with adiposity.MethodsDuodenal tissues were collected from aged (21.21.3years, 19.53.1kg, n=39) female baboons (Papio sp.). Fasted blood was collected for metabolic profiling and abdominal circumference (AC) measurements were taken. Primary tissue samples were collected at the major duodenal papilla at necropsy: one full cross section was processed for hematoxylin and eosin staining and evaluated; a second full cross section was processed for direct chemical lipid analysis on which percentage duodenal fat content was calculated.Results Duodenal fat content obtained by direct tissue quantification showed considerable variability (11.95 +/- 6.93%) and was correlated with AC (r=0.60, p<0.001), weight (r=0.38, p=0.02), leptin (r=0.63, p<0.001), adiponectin (r=-0.32, p<0.05), and triglyceride (r=0.41, p=0.01). The relationship between duodenal fat content and leptin remained after adjusting for body weight and abdominal circumference. Intramural adipocytes were found in duodenal sections from all animals and were localized to the submucosa. Consistent with the variation in tissue fat content, the submucosal adipocytes were non-uniformly distributed in clusters of varying size. Duodenal adipocytes were larger in obese vs. lean animals (106.9 vs. 66.7 mu m(2), p=0.02).Conclusions Fat accumulation inside the duodenal wall is strongly associated with adiposity and adiposity related circulating biomarkers in baboons. Duodenal tissue fat represents a novel and potentially metabolically active site of ectopic fat deposition
    corecore