7 research outputs found

    Identification of SNPs potentially related to immune responses and growth performance in Litopenaeus vannamei by RNA-seq analyses

    Get PDF
    Litopenaeus vannamei is one of the most important shrimp species for worldwide aquaculture. Despite this, little genomic information is available for this penaeid and other closely related taxonomic crustaceans. Consequently, genes, proteins and their respective polymorphisms are poorly known for these species. In this work, we used the RNA sequencing technology (RNA-seq) in L. vannamei shrimp evaluated for growth performance, and exposed to the White Spot Syndrome Virus (WSSV), in order to investigate the presence of Single Nucleotide Polymorphisms (SNPs) within genes related to innate immunity and growth, both features of great interest for aquaculture activity. We analyzed individuals with higher and lower growth rates; and infected (unhealthy) and non-infected (healthy), after exposure to WSSV. Approximately 7,000 SNPs were detected in the samples evaluated for growth, being 3,186 and 3,978 exclusive for individuals with higher and lower growth rates, respectively. In the animals exposed to WSSV we found about 16,300 unique SNPs, in which 9,338 were specific to non-infected shrimp, and 7,008 were exclusive to individuals infected with WSSV and symptomatic. In total, we describe 4,312 unigenes containing SNPs. About 60% of these unigenes returned GO blastX hits for Biological Process, Molecular Function and Cellular Component ontologies. We identified 512 KEGG unique KOs distributed among 275 pathways, elucidating the majority of metabolism roles related to high protein metabolism, growth and immunity. These polymorphisms are all located in coding regions, and certainly can be applied in further studies involving phenotype expression of complex traits, such as growth and immunity. Overall, the set of variants raised herein enriches the genomic databases available for shrimp, given that SNPs originated from nextgen are still rare for this relevant crustacean group, despite their huge potential of use in genomic selection approaches

    Raymond Gibson (1938–2023): in memoriam

    Get PDF
    On 29 January 2023, Raymond (Ray) Gibson (Fig. 1), Professor Emeritus of Liverpool John Moores University, died in a hospital on the Wirral. He lived a very busy life, rich in travels and scientific discoveries, and he was one of the most authoritative world experts in the taxonomy of nemerteans. Ray was born on 23 November 1938 in Catterick Village in Yorkshire. He gained his Private Pilot’s License aged 17 and had several adventures in the small plane. In 1965 after leaving the Royal Airforce as a qualified pilot he got his B.Sc. in Zoology First class degree from Leeds University and in 1968 gained his Ph.D. from Leeds University. Ray began his interest in nemerteans when he was a student at Leeds University. His Ph.D. supervisor was Dr. Joe Jennings, who at the time was researching the nutrition and digestion of nemerteans and “turbellarians” (a grade of free-living platyhelminths). Ray’s first articles on the nutrition and biology of Malacobdella grossa were published when he was at Leeds University (Gibson 1967, 1968; Gibson & Jennings 1969). In 1971 Ray joined the Liverpool Regional College of Technology (this became Liverpool Polytechnic and then Liverpool John Moores University), where he worked for 30 years. His first book (Gibson 1972) is an excellent summary of knowledge on nemertean biology at the time and has ‘entangled’ (rather than ‘hooked’) young students worldwide in the following generations into this field. Ray’s exploratory enthusiasm was unmatched. He would come early in the morning and spend the day in concentrated writing, microscopy, or figure preparation. An ashtray was ever present next to his microscope and cigarettes and black coffee were all he needed to sustain him through the long days. For a long time, the histology unit was complete with the all-pervasive smell of xylene. He supervised post-graduates from many countries and backgrounds, teaching them the intricacies of paraffin sectioning and histochemistry.Peer reviewe

    Gene expression profiling by high throughput sequencing to determine signatures for the bovine receptive uterus at early gestation

    Get PDF
    The uterus plays a central role among the reproductive tissues in the context of early embryo-maternal communication and a successful pregnancy depends on a complex series of endometrial molecular and cellular events. The factors responsible for the initial interaction between maternal and embryonic tissues, leading to the establishment of pregnancy, remain poorly understood. In this context, Illumina's next-generation sequencing technology has been used to discover the uterine transcriptome signature that is favourable for ongoing pregnancy. More specifically, the present report documents on a retrospective in vivo study in which data on pregnancy outcome were linked to uterine gene expression signatures on day 6 (bovine model). Using the RNA-Seq method, 14.654 reference genes were effectively analysed for differential expression between pregnant and non-pregnant uterine tissue. Transcriptome data revealed that 216 genes were differently expressed when comparing uterine tissue from pregnant and non-pregnant cows. All read sequences were deposited in the Sequence Read Archive (SRA) of the NCBI (http://www.ncbi.nlm.nih.gov/sra). An overview of the gene expression data has been deposited in NCBI's Gene Expression Omnibus (GEO) and is accessible through GEO Series accession number GSE65117. This allows the research community to enhance reproducibility and allows for new discoveries by comparing datasets of signatures linked to receptivity and/or pregnancy success. The resulting information can serve as tool to identify valuable and urgently needed biomarkers for scoring maternal receptivity and even for accurate detection of early pregnancy, which is a matter of cross-species interest. Beyond gene expression analysis as a marker tool, the RNA-Seq information on pregnant uterine tissue can be used to gain novel mechanistic insights, such as by identifying alternative splicing events, allele-specific expression, and rare and novel transcripts that might be involved in the onset of maternal receptivity. This concept is unique and provides a new approach towards strategies that are highly needed to improve efficiency of fertility treatments

    Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca)

    No full text
    Revived interest in molluscan phylogeny has resulted in a torrent of molecular sequence data from phylogenetic, mitogenomic, and phylogenomic studies. Despite recent progress, basal relationships of the class Bivalvia remain contentious, owing to conflicting morphological and molecular hypotheses. Marked incongruity of phylogenetic signal in datasets heavily represented by nuclear ribosomal genes versus mitochondrial genes has also impeded consensus on the type of molecular data best suited for investigating bivalve relationships. To arbitrate conflicting phylogenetic hypotheses, we evaluated the utility of four nuclear protein-encoding genes—ATP synthase β, elongation factor-1α, myosin heavy chain type II, and RNA polymerase II—for resolving the basal relationships of Bivalvia. We sampled all five major lineages of bivalves (Archiheterodonta, Euheterodonta [including Anomalodesmata], Palaeoheterodonta, Protobranchia, and Pteriomorphia) and inferred relationships using maximum likelihood and Bayesian approaches. To investigate the robustness of the phylogenetic signal embedded in the data, we implemented additional datasets wherein length variability and/or third codon positions were eliminated. Results obtained include (a) the clade (Nuculanida + Opponobranchia), i.e., the traditionally defined Protobranchia; (b) the monophyly of Pteriomorphia; (c) the clade (Archiheterodonta + Palaeoheterodonta); (d) the monophyly of the traditionally defined Euheterodonta (including Anomalodesmata); and (e) the monophyly of Heteroconchia, i.e., (Palaeoheterodonta + Archiheterodonta + Euheterodonta). The stability of the basal tree topology to dataset manipulation is indicative of signal robustness in these four genes. The inferred tree topology corresponds closely to those obtained by datasets dominated by nuclear ribosomal genes (18S rRNA and 28S rRNA), controverting recent taxonomic actions based solely upon mitochondrial gene phylogenies

    C4 and crassulacean acid metabolism within a single leaf: deciphering key components behind a rare photosynthetic adaptation.

    No full text
    Though biochemically related, C4 and crassulacean acid metabolism (CAM) systems are expected to be incompatible. However, Portulaca species, including P. oleracea, operate C4 and CAM within a single leaf, and the mechanisms behind this unique photosynthetic arrangement remain largely unknown. Here, we employed RNA-seq to identify candidate genes involved exclusively or shared by C4 or CAM, and provided an in-depth characterization of their transcript abundance patterns during the drought-induced photosynthetic transitions in P. oleracea. Data revealed fewer candidate CAM-specific genes than those recruited to function in C4 . The putative CAM-specific genes were predominantly involved in nighttime primary carboxylation reactions and malate movement across the tonoplast. Analysis of gene transcript-level regulation and photosynthetic physiology indicated that C4 and CAM co-exist within a single P. oleracea leaf under mild drought conditions. Developmental and environmental cues were shown to regulate CAM expression in stems, whereas the shift from C4 to C4 -CAM hybrid photosynthesis in leaves was strictly under environmental control. Moreover, efficient starch turnover was identified as part of the metabolic adjustments required for CAM operation in both organs. These findings provide insights into C4 /CAM connectivity and compatibility, contributing to a deeper understanding of alternative ways to engineer CAM into C4 crop species
    corecore