1,501 research outputs found
A Raman scattering-based method to probe the carrier drift velocity in semiconductors: Application to gallium nitride
A single expression relating the carrier drift velocity in semiconductors under an electric field to Raman scattering data is derived resorting to a full nonequilibrium picture for electrons and holes. It allows one to probe with high optical precision both the ultrafast transient as well as the steady state carriers' drift velocity in semiconductor systems. This is achieved by simply modifying the experimental geometry, thus changing the angle between the transferred wave vector Q and the applied electric field E, and measuring the frequency shift promoted by the presence of the field to be observed in the single-particle and plasmon scattering spectra. An application to zinc-blende gallium nitride is presented to highlight the power of the method. (C) 2004 American Institute of Physics.85184055405
The phonon theory of liquid thermodynamics
Heat capacity of matter is considered to be its most important property
because it holds information about system's degrees of freedom as well as the
regime in which the system operates, classical or quantum. Heat capacity is
well understood in gases and solids but not in the third state of matter,
liquids, and is not discussed in physics textbooks as a result. The perceived
difficulty is that interactions in a liquid are both strong and
system-specific, implying that the energy strongly depends on the liquid type
and that, therefore, liquid energy can not be calculated in general form. Here,
we develop a phonon theory of liquids where this problem is avoided. The theory
covers both classical and quantum regimes. We demonstrate good agreement of
calculated and experimental heat capacity of 21 liquids, including noble,
metallic, molecular and hydrogen-bonded network liquids in a wide range of
temperature and pressure.Comment: 7 pages, 4 figure
Pneumonia and poverty: a prospective population-based study among children in Brazil
<p>Abstract</p> <p>Background</p> <p>Children in developing country suffer the highest burden of pneumonia. However, few studies have evaluated associations between poverty and pneumonia.</p> <p>Methods</p> <p>A prospective population-based study on pneumonia was carried out as part of the Latin America Epidemiological Assessment of Pneumococcus (LEAP study). Chest x-rays were obtained for children one to 35 months old with suspected pneumonia presenting to emergency care centers and hospital emergency rooms in Goiania, Brazil. Chest radiographs were evaluated according to WHO guidelines. Clustering of radiologically-confirmed pneumonia were evaluated using a Poisson-based spatial scan statistic. Associations between census socioeconomic indicators and pneumonia incidence rates were analyzed using generalized linear models.</p> <p>Results</p> <p>From May, 2007 to May, 2009, chest radiographs were obtained from 11 521 children with clinical pneumonia; 3955 episodes were classified as radiologically-confirmed. Incidence rates were significantly higher in very low income areas (4825.2 per 10<sup>5</sup>) compared to high income areas (1637.3 per 10<sup>5</sup>). Spatial analysis identified clustering of confirmed pneumonia in Western (RR 1.78; p = 0.001) and Southeast (RR 1.46; p = 0.001) regions of the city, and clustering of hospitalized pneumonia in the Western region (RR 1.69; p = 0.001). Lower income households and illiteracy were associated with pneumonia incidence.</p> <p>Conclusions</p> <p>In infants the risk of developing pneumonia is inversely associated with the head of household income and with the woman educational level. Areas with deprived socioeconomic conditions had higher incidence of pneumonia and should be targeted for high vaccination coverage.</p
Phonon-driven spin-Floquet magneto-valleytronics in MoS2
Two-dimensional materials equipped with strong spin-orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS2, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E '' phonon that lifts the lattice mirror symmetry. Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet spectra of the phonon-dressed spins carry a net out-of-plane magnetization (approximate to 0.024 mu(B) for single-phonon quantum) even though the original system is non-magnetic. This dichroic magnetic response of the valley states is general for all 2H semiconducting transition-metal dichalcogenides and can be probed and controlled by infrared coherent laser excitation
- …