45 research outputs found

    A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks

    Get PDF
    The success of catalytic schemes for the large-scale valorization of CO2 does not only depend on the development of active, selective and stable catalytic materials but also on the overall process design. Here we present a multidisciplinary study (from catalyst to plant and techno-economic/lifecycle analysis) for the production of green methanol from renewable H2 and CO2. We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts (InCo) with a thorough process simulation and techno-economic assessment. We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO2. Our results indicate that up to 1.75 ton of CO2 can be abated per ton of produced methanol only if renewable energy is used to run the process, while the sensitivity analysis suggest that either rock-bottom H2 prices (1.5 kg−1)orsevereCO2taxation(300 kg−1) or severe CO2 taxation (300 per ton) are needed for a profitable methanol plant. Besides, we herein highlight and analyze some critical bottlenecks of the process. Especial attention has been paid to the contribution of H2 to the overall plant costs, CH4 trace formation, and purity and costs of raw gases. In addition to providing important information for policy makers and industrialists, directions for catalyst (and therefore process) improvements are outlined.The authors gratefully acknowledge financial support from the King Abdullah University of Science and Technology (KAUST). T. Cordero-Lanzac and A.T. Aguayo acknowledge the financial support received from the Spanish Ministry of Science and Innovation with some ERDF funds (CTQ2016-77812-R) and the Basque Government (IT1218-19). T. Cordero-Lanzac also acknowledges the Spanish Ministry of Education, Culture and Sport for the award of his FPU grant (FPU15-01666). A. Navajas and L.M. Gandía gratefully acknowledge the financial support from Spanish Ministerio de Ciencia, Innovación y Universidades, and the European Regional Development Fund (ERDF/FEDER) (grant RTI2018-096294-B-C31). L.M. Gandía also thanks Banco de Santander and Universidad Pública de Navarra for their financial support under ‘’Programa de Intensificación de la Investigación 2018’ initiative

    Inflation and Dark Energy from spectroscopy at z > 2

    Get PDF

    Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice.

    No full text
    We used a retroviral integration screen to search for novel genes that regulate HSC function. One of the genes that conferred HSC dominance when overexpressed due to an adjacent retroviral insertion was Musashi 2 (Msi2), an RNA-binding protein that can act as a translational inhibitor. A gene-trap mouse model that inactivates the gene shows that Msi2 is more highly expressed in long-term (LT) and short-term (ST) HSCs, as well as in lymphoid myeloid primed progenitors (LMPPs), but much less in intermediate progenitors and mature cells. Mice lacking Msi2 are fully viable for up to a year or more, but exhibit severe defects in primitive precursors, most significantly a reduction in the number of ST-HSCs and LMPPs and a decrease in leukocyte numbers, effects that are exacerbated with age. Cell-cycle and gene-expression analyses suggest that the main hematopoietic defect in Msi2-defective mice is the decreased proliferation capacity of ST-HSCs and LMPPs. In addition, HSCs lacking Msi2 are severely impaired in competitive repopulation experiments, being overgrown by wild-type cells even when mutant cells were provided in excess. Our data indicate that Msi2 maintains the stem cell compartment mainly by regulating the proliferation of primitive progenitors downstream of LT-HSCs
    corecore