58 research outputs found

    Basement structure of the Hontomín CO2 storage site (Spain) determined by integration of microgravity and 3-D seismic data

    Get PDF
    A multidisciplinary study has been carried out in Hontomín (Spain) to determine the basement structural setting, its geometry and the geometry of the sedimentary succession of an area aimed to be the first Spanish pilot plant for CO2 storage. An integration of coincident 3-D seismic results, borehole data and unpublished microgravity data were used to reproduce the deep structure and topography of the basement and to quantify the thickness of the Triassic Keuper evaporites. The subsurface structure is characterized by a half-graben setting filled with Keuper evaporites (up to 2000m thick), forming an extensional forced fold. All data sets clearly identify two main fault systems, compartmentalizing the main structural domain into three differentiated blocks. These faults have been interpreted to be reactivated normal faults that have led to the formation of the Hontomín dome. © Author(s) 2016.The data sets in this work have been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme for Recovery” and the Compostilla OXYCFB300 project. Juan Alcalde is currently funded by NERC grant NE/M007251/1.Peer reviewe

    Basement structure of the Hontomín CO2 Geological storage facility (Burgos, Spain): integration of microgravity & 3D seismic reflection data

    Get PDF
    The structure of the Hontomín CO2 geological storage research facility has been addressed combining 3D seismic reflection data, borehole information and microgravity data. The integrated interpretation constrains the basement structural setting geometry and that of the sedimentary succession. The study unravels the deep structure and topography of the basement and quantifies the thickness of the Triassic Keuper evaporites. We describe a half-graben setting filled with Keuper evaporites (up to 2000 m) forming an extensional forced fold. Three set of faults are identified with two main fault systems compartmentalizing the area into three differentiated blocks. These faults have been interpreted to be reactivated normal faults that have led to the formation of the Hontomín dome.The datasets in this work have been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme for Recovery” and the Compostilla OXYCFB300 project. Dr. Juan Alcalde is currently funded by NERC grant NE/M007251/1.Peer Reviewe

    Basement structure of the Hontomín CO2 Geological storage facility (Burgos, Spain): integration of microgravity & 3D seismic reflection data

    Get PDF
    The structure of the Hontomín CO2 geological storage research facility has been addressed combining 3D seismic reflection data, borehole information and microgravity data. The integrated interpretation constrains the basement structural setting geometry and that of the sedimentary succession. The study unravels the deep structure and topography of the basement and quantifies the thickness of the Triassic Keuper evaporites. We describe a half-grabensetting filled with Keuper evaporites (up to 2000 m) forming an extensional forced fold. Three set of faults are identified with two main fault systems compartmentalizing the area into three differentiated blocks. These faults have been interpreted to be reactivated normal faults that have led to the formation of the Hontomín dome.The datasets in this work have been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union throughthe “European Energy Programme for Recovery” and the Compostilla OXYCFB300 project. Dr. Juan Alcalde is currently funded by NERC grant NE/M007251/1.Peer Reviewe

    Caracterización conjunta del basamento en Hontomín (España) empleando datos sísmicos y microgravimétricos

    Get PDF
    9ª Asamblea Hispano Portuguesa de Geodesia y Geofísica: Madrid 28-30 de junio 2016 / Organizado por la Comisión Española de Geodesia y Geofísica ; Secçao Portuguesa das Unios Internacionais Astronomica e Geodésica ; Universidad Complutense de MadridInstitut de Ciéncies de la Terra Jaume Almera, EspañaDepartment of Geology and Petroleum Geology, University of Aberdeen, Reino UnidoDepartamento de Geología, Universidad de Salamanca, EspañaInstituto Geológico y Minero de España, EspañaPeer reviewe

    Basement structure of the Hontomín CO2 storage site (Spain) determined by integration of microgravity and 3D seismic data

    Get PDF
    We dedicate this paper to the memory of Prof. Andres Perez Estaún, who was a great and committed scientist, wonderful colleague and even better friend. The datasets in this work have been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme 15 for Recovery” and the Compostilla OXYCFB300 project. Dr. Juan Alcalde is currently funded by NERC grant NE/M007251/1. Simon Campbell and Samuel Cheyney are acknowledged for thoughtful comments on gravity inversionPeer reviewedPublisher PD

    Crustal Imbrication in an Alpine Intraplate Mountain Range: A Wide-Angle Cross-Section Across the Spanish-Portuguese Central System

    Get PDF
    Intraplate ranges are topographic features that can occur far from plate boundaries, the expected position of orogens as described in the plate tectonics theory. To understand the lithospheric structure of intraplate ranges, we focused on the Spanish-Portuguese Central System (SPCS), the most outstanding topographic feature in the central Iberian Peninsula. The SPCS is an Alpine range that exhumes Precambrian-Paleozoic rocks and is located at >200 km from the northern border of the Iberian microplate. Here, we provide a P-wave velocity model based on wide-angle seismic reflection/refraction data of the central SPCS (Gredos sector). Our results show: (a) a layered lithosphere characterized by three major interfaces: Conrad, Mohorovicic, and Hales discontinuities, (b) an asymmetry of the crust-mantle boundary under the SPCS, (c) the extent of the Variscan batholith forming the main outcrops of Gredos, and (d) the thinning of the lower crust toward the south. This model suggests that the exhumation of the SPCS basement was driven by a south-vergent thick-skinned thrust system, developed in the southern part of the SPCS and that promoted crustal imbrication and a Mohorovicic discontinuity's offset under the SPCS. Thus, the deformation mechanisms of the crust seem to be controlled by the presence of the late- to post-Variscan granitoids that assimilated the Variscan mid-crustal detachment creating a new rheological boundary. This tectonic structure allowed the formation of Alpine crustal-scale thrust systems that eased coupled deformation of the upper and lower crust, leading to limited underthrusting of both crustal layers.Ministry of Science, Innovation and Competitiveness through the Project CIMDEF (CGL2014-56548-P)Spanish Government and the University of Salamanca (Beatriz Galindo grant BEGAL 18/00090)Grant IJC2018-036074-I, funded by MCIN/AEI/10.13039/501100011033Grants CGL2015-71692 (MINECO/ FEDER) and PID2020-118822GB-I00 (MCIN/AEI/10.13039501100011033

    Crustal Imbrication in an Alpine Intraplate Mountain Range: A Wide-Angle Cross-Section Across the Spanish-Portuguese Central System

    Get PDF
    Intraplate ranges are topographic features that can occur far from plate boundaries, the expected position of orogens as described in the plate tectonics theory. To understand the lithospheric structure of intraplate ranges, we focused on the Spanish-Portuguese Central System (SPCS), the most outstanding topographic feature in the central Iberian Peninsula. The SPCS is an Alpine range that exhumes Precambrian-Paleozoic rocks and is located at >200 km from the northern border of the Iberian microplate. Here, we provide a P-wave velocity model based on wide-angle seismic reflection/refraction data of the central SPCS (Gredos sector). Our results show: (a) a layered lithosphere characterized by three major interfaces: Conrad, Mohorovicic, and Hales discontinuities, (b) an asymmetry of the crust-mantle boundary under the SPCS, (c) the extent of the Variscan batholith forming the main outcrops of Gredos, and (d) the thinning of the lower crust toward the south. This model suggests that the exhumation of the SPCS basement was driven by a south-vergent thick-skinned thrust system, developed in the southern part of the SPCS and that promoted crustal imbrication and a Mohorovicic discontinuity's offset under the SPCS. Thus, the deformation mechanisms of the crust seem to be controlled by the presence of the late- to post-Variscan granitoids that assimilated the Variscan mid-crustal detachment creating a new rheological boundary. This tectonic structure allowed the formation of Alpine crustal-scale thrust systems that eased coupled deformation of the upper and lower crust, leading to limited underthrusting of both crustal layers.This study has been funded by the Ministry of Science, Innovation and Competitiveness through the Project CIMDEF (CGL2014-56548-P). IP is funded by the Spanish Government and the University of Salamanca (Beatriz Galindo grant BEGAL 18/00090). JA is funded by grant IJC2018-036074-I, funded by MCIN/AEI/10.13039/501100011033. DMP and FGL are also funded by grants CGL2015-71692 (MINECO/ FEDER) and PID2020-118822GB-I00 (MCIN/AEI/10.13039/501100011033).Peer reviewe

    Characterization of the Cerdanya Neogene Basin by combining geophysical methods: passive seismic, magnetotelluric and gravimetry.

    Get PDF
    Congreso realizado en Toledo del 28 de noviembre al 1 de diciembre de 2022.[EN] The Cerdanya Neogene basin, located in the eastern sector of the Central Pyrenees, has been studied to characterize its structure in depth. The thickness of the Neogene filling of the basin (detrital materials with some levels of lignite) has been inferred by combining different geophysical exploration methods in a NW-SE trending profile that crosses, perpendicularly, the basin in its central part: passive seismic (H/V spectral ratio method and array technique), electromagnetic methods (MT and AMT) and gravimetry. Applying the array technique, the shear wave velocity (Vs) of the basin materials has been calculated, both for the Neogene deposits and the bedrock. These data combined with the results obtained from the H/V spectral ratio method allow deriving the bedrock geometry. The electromagnetic method provides the 2D electrical resistivity model, characterizing the geoelectric properties of the basin and depicting the presence of the d'Alp-la Tet fault, an important structural element of the basin. The electrical model inversion uses as an initial model the bedrock depth obtained from the passive seismic. In the residual Bouguer anomaly modelling, a satisfactory gravimetric model is obtained when the thickness of the Neogene deposits varies between 0 and 650 meters and assigned density of 2.2 g/cm3 , supported by the low Vs obtained. The thickness of the Neogene filling presents variations that are related to the presence of normal fault with small vertical offset. The application of this methodology, based on the combination of different geophysical exploration methods, has reduced the different uncertainties inherent in each geophysical method, and aim to characterize the Cerdanya Neogene basin geometry.Este trabajo se ha financiado con el proyecto PID2020-114273GB-C22 financiado por MCIN/AEI/10.13039/501100011033 del Ministerio de Ciencia e Innovación de España.Peer reviewe
    corecore