17 research outputs found

    Colicin A hybrids: a genetic tool for selection of type II secretion-proficient Pseudomonas strains

    No full text
    The Gram-negative bacterium Pseudomonas aeruginosa secretes the majority of its extracellular proteins by the type II secretion mechanism, a two-step process initiated by translocation of signal peptide-bearing exoproteins across the inner membrane. The periplasmic forms are transferred across the outer membrane by a machinery consisting of 12 xcp gene products. Although the type II secretion machinery is conserved among Gram-negative bacteria, interactions between the secreted proteins and the machinery are specific. The lack of a selectable phenotype has hampered the development of genetic strategies for studying type II secretion. We report a novel strategy to identify rare events, such as those that allow heterologous secretion or identification of extragenic suppressors correcting xcp defects. This is based on creating a host-vector system where the non-secretory phenotype is lethal. The original tool we designed is a hybrid protein containing elastase and the pore-forming domain of colicin A

    Identification of XcpZ Domains Required for Assembly of the Secreton of Pseudomonas aeruginosa

    No full text
    Most of the exoproteins secreted by Pseudomonas aeruginosa are transported via the type II secretion system. This machinery, which is widely conserved in gram-negative bacteria, consists of 12 Xcp proteins organized as a multiprotein complex, also called the secreton. We previously reported that the mutual stabilization of XcpZ and XcpY plays an important role in the assembly of the secreton. In this study, we engineered variant XcpZ proteins by using linker insertion mutagenesis. We identified three distinct regions of XcpZ required for both the stabilization of XcpY and the functionality of the secreton. Interestingly, we also demonstrated that another component of the machinery, XcpP, can modulate the stabilizing activity of XcpZ on XcpY

    Advancing the Quorum in Pseudomonas aeruginosa: MvaT and the Regulation of N-Acylhomoserine Lactone Production and Virulence Gene Expression.

    No full text
    Pseudomonas aeruginosa regulates the production of many exoproteins and secondary metabolites via a hierarchical quorum-sensing cascade through LasR and RhlR and their cognate signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (3O-C12-HSL) and N-(butanoyl)-L-homoserine lactone (C4-HSL). In this study, we found that transcription of the quorum sensing-regulated genes lecA (coding for PA-IL lectin), lasB (coding for elastase), and rpoS appeared to be growth phase dependent and their expression could not be advanced to the logarithmic phase in cells growing in batch culture by the addition of exogenous C4-HSL and 3O-C12-HSL. To identify novel regulators responsible for this growth phase dependency, a P. aeruginosa lecA::lux reporter strain was subjected to random transposon mutagenesis. A number of mutants affected in lecA expression were found that exhibited altered production of multiple quorum sensing-dependent phenotypes. While some mutations were mapped to new loci such as clpA and mvaT and a putative efflux system, a number of mutations were also mapped to known regulators such as lasR, rhlR, and rpoS. MvaT was identified as a novel global regulator of virulence gene expression, as a mutation in mvaT resulted in enhanced lecA expression and pyocyanin production. This mutant also showed altered swarming ability and production of the LasB and LasA proteases, 3O-C12-HSL, and C4-HSL. Furthermore, addition of exogenous 3O-C12-HSL and C4-HSL to the mvaT mutant significantly advanced lecA expression, suggesting that MvaT is involved in the growth phase-dependent regulation of the lecA gene

    Quorum Sensing Negatively Controls Type III Secretion Regulon Expression in Pseudomonas aeruginosa PAO1

    No full text
    A systematic analysis of the type III secretion (T3S) genes of Pseudomonas aeruginosa strain PAO1 revealed that they are under quorum-sensing control. This observation was supported by the down-regulation of the T3S regulon in the presence of RhlR-C(4)HSL and the corresponding advanced secretion of ExoS in a rhlI mutant

    A Distinct QscR Regulon in the Pseudomonas aeruginosa Quorum-Sensing Circuit

    No full text
    The opportunistic pathogen Pseudomonas aeruginosa possesses two complete acyl-homoserine lactone (acyl-HSL) signaling systems. One system consists of LasI and LasR, which generate a 3-oxododecanoyl-homoserine lactone signal and respond to that signal, respectively. The other system is RhlI and RhlR, which generate butanoyl-homoserine lactone and respond to butanoyl-homoserine lactone, respectively. These quorum-sensing systems control hundreds of genes. There is also an orphan LasR-RhlR homolog, QscR, for which there is no cognate acyl-HSL synthetic enzyme. We previously reported that a qscR mutant is hypervirulent and showed that QscR transiently represses a few quorum-sensing-controlled genes. To better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR, and RhlR control of gene expression, we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems, while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus, QscR appears to be an integral component of the P. aeruginosa quorum-sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR- and RhlR-dependent regulons
    corecore