22 research outputs found

    Étude du mĂ©canisme molĂ©culaire de rĂ©sistance antivirale du cytomĂ©galovirus humain et des mutations de l’ADN polymĂ©rase UL54 qui lui sont associĂ©es

    Get PDF
    Le cytomĂ©galovirus humain (HCMV), un membre de la famille des Herpesviridae, cause des infections latentes chez plus de la moitiĂ© (60 %) de la population dans les pays dĂ©veloppĂ©s. Cette proportion peut atteindre jusqu’à la totalitĂ© (100%) de la population dans les pays en voie de dĂ©veloppement. Sa primo-infection chez le foetus en dĂ©veloppement ou chez le nouveau-nĂ© ainsi que sa rĂ©activation chez les individus immunodĂ©primĂ©s sont associĂ©s Ă  de nombreux cas de morbiditĂ© et de mortalitĂ©. L’infection congĂ©nitale est l’infection Ă  HCMV la plus importante et engendre un coĂ»t Ă©conomique de plus de 2 milliards de dollars amĂ©ricains chaque annĂ©e. Aucun vaccin n’est approuvĂ© Ă  ce jour pour la prĂ©vention de l’infection Ă  HCMV. Cependant, des antiviraux sont disponibles pour le traitement de cette infection. Parmi ceux-ci, on retrouve trois types d’analogues : un analogue nuclĂ©osidique (ganciclovir), un analogue nuclĂ©osidique monophosphatĂ© (cidofovir) et un analogue du pyrophosphate inorganique (foscarnet). Ces antiviraux ont tous comme cible commune l’ADN polymĂ©rase virale. Toutefois, de nombreuses souches rĂ©sistantes Ă  ces antiviraux sont retrouvĂ©es chez certains individus infectĂ©s. Ces souches rĂ©sistantes prĂ©sentent de nombreuses mutations au niveau du gĂšne viral qui encode pour l’ADN polymĂ©rase UL54 du cytomĂ©galovirus. Jusqu’à prĂ©sent dans la littĂ©rature, seule l’association entre les mutations et la rĂ©sistance antivirale a Ă©tĂ© proposĂ©e. Les travaux prĂ©sentĂ©s dans ce mĂ©moire visent Ă  mieux comprendre l’effet des mutations sur la liaison des antiviraux Ă  la polymĂ©rase et donc Ă©ventuellement Ă©lucider le mĂ©canisme molĂ©culaire de rĂ©sistance aux antiviraux chez ce pathogĂšne. Cette recherche a permis de dĂ©terminer que les mutations, associĂ©es Ă  la rĂ©sistance antivirale, affectent la liaison optimale des dĂ©soxynuclĂ©otides (dNTPs) et bloquent la liaison de l’antiviral (foscarnet) Ă  l’ADN polymĂ©rase virale UL54. Toutefois, ces mutations n’affectent pas la liaison de l’ADN simple brin Ă  celle-ci. De plus, selon l’étude prĂ©sentĂ©e ici, les mutations n’affectent pas le repliement global de l’ADN polymĂ©rase virale. Le mĂ©canisme de rĂ©sistance molĂ©culaire semble donc avoir un impact trĂšs local sur la protĂ©ine. Peu d’informations sur la structure de cette polymĂ©rase virale sont disponibles Ă  ce jour dans la littĂ©rature. Il serait donc pertinent d’élucider la structure cristallographique de cette polymĂ©rase pour Ă©ventuellement Ă©tudier l’effet structural des mutations sur la polymĂ©rase et ainsi Ă©lucider le ou les mĂ©canismes molĂ©culaires de rĂ©sistance aux antiviraux

    Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma

    Get PDF
    Protein families encoded by transcripts that are differentially spliced in various types of HCC. Table S2. Bioinformatical prediction of functional changes caused by some of ASEs identified. Table S3. List of tumor suppressors for which AS is dysregulated in various types of HCC. Table S4. List of oncogenes for which AS is dysregulated in various types of HCC. Table S5. List of kinases for which AS is dysregulated in various types of HCC. Table S6. List of transcription factors for which AS is dysregulated in various types of HCC. Table S7. List of genes for which AS is dysregulated in all types of HCC. Table S8. List of genes uniquely dysregulated in HBV-associated HCC. Table S9. List of genes uniquely dysregulated in HCV-associated HCC. Table S10. List of genes uniquely dysregulated in HBV&HCV-associated HCC. Table S11. List of genes uniquely dysregulated in virus-free HCC. Figure S1. Characterization of splicing mysregulation in HCC. Figure S2. Characterization of ASEs that are modified in HBV- and HCV-associated HCC. Figure S3. AS modifications in transcripts encoded by kinases and transcriptions factores in HBV- and HCV-associated HCC. Figure S4. Global profiling of ASE modifications in both HBV&HCV-associated HCC and virus-free-associated HCC. Figure S5. RNA splicing factors in HCC. Figure S6. Modifications to AS of 96 transcripts in response to knockdown of splicing factors with specific siRNAs (PDF 6675 kb

    Étude du mĂ©canisme molĂ©culaire de rĂ©sistance antivirale du cytomĂ©galovirus humain et des mutations de l’ADN polymĂ©rase UL54 qui lui sont associĂ©es

    No full text
    Le cytomĂ©galovirus humain (HCMV), un membre de la famille des Herpesviridae, cause des infections latentes chez plus de la moitiĂ© (60 %) de la population dans les pays dĂ©veloppĂ©s. Cette proportion peut atteindre jusqu’à la totalitĂ© (100%) de la population dans les pays en voie de dĂ©veloppement. Sa primo-infection chez le foetus en dĂ©veloppement ou chez le nouveau-nĂ© ainsi que sa rĂ©activation chez les individus immunodĂ©primĂ©s sont associĂ©s Ă  de nombreux cas de morbiditĂ© et de mortalitĂ©. L’infection congĂ©nitale est l’infection Ă  HCMV la plus importante et engendre un coĂ»t Ă©conomique de plus de 2 milliards de dollars amĂ©ricains chaque annĂ©e. Aucun vaccin n’est approuvĂ© Ă  ce jour pour la prĂ©vention de l’infection Ă  HCMV. Cependant, des antiviraux sont disponibles pour le traitement de cette infection. Parmi ceux-ci, on retrouve trois types d’analogues : un analogue nuclĂ©osidique (ganciclovir), un analogue nuclĂ©osidique monophosphatĂ© (cidofovir) et un analogue du pyrophosphate inorganique (foscarnet). Ces antiviraux ont tous comme cible commune l’ADN polymĂ©rase virale. Toutefois, de nombreuses souches rĂ©sistantes Ă  ces antiviraux sont retrouvĂ©es chez certains individus infectĂ©s. Ces souches rĂ©sistantes prĂ©sentent de nombreuses mutations au niveau du gĂšne viral qui encode pour l’ADN polymĂ©rase UL54 du cytomĂ©galovirus. Jusqu’à prĂ©sent dans la littĂ©rature, seule l’association entre les mutations et la rĂ©sistance antivirale a Ă©tĂ© proposĂ©e. Les travaux prĂ©sentĂ©s dans ce mĂ©moire visent Ă  mieux comprendre l’effet des mutations sur la liaison des antiviraux Ă  la polymĂ©rase et donc Ă©ventuellement Ă©lucider le mĂ©canisme molĂ©culaire de rĂ©sistance aux antiviraux chez ce pathogĂšne. Cette recherche a permis de dĂ©terminer que les mutations, associĂ©es Ă  la rĂ©sistance antivirale, affectent la liaison optimale des dĂ©soxynuclĂ©otides (dNTPs) et bloquent la liaison de l’antiviral (foscarnet) Ă  l’ADN polymĂ©rase virale UL54. Toutefois, ces mutations n’affectent pas la liaison de l’ADN simple brin Ă  celle-ci. De plus, selon l’étude prĂ©sentĂ©e ici, les mutations n’affectent pas le repliement global de l’ADN polymĂ©rase virale. Le mĂ©canisme de rĂ©sistance molĂ©culaire semble donc avoir un impact trĂšs local sur la protĂ©ine. Peu d’informations sur la structure de cette polymĂ©rase virale sont disponibles Ă  ce jour dans la littĂ©rature. Il serait donc pertinent d’élucider la structure cristallographique de cette polymĂ©rase pour Ă©ventuellement Ă©tudier l’effet structural des mutations sur la polymĂ©rase et ainsi Ă©lucider le ou les mĂ©canismes molĂ©culaires de rĂ©sistance aux antiviraux

    DXO hydrolyzes only capped RNAs without a 2’-<i>O</i>-methylation.

    Get PDF
    <p>(A) The RNA 5’ cap structure is composed of a guanosine (blue) linked to the RNA (black) through a 5’-5’ triphosphate bridge. The subsequent N7-methylation of the guanosine (magenta) confers a positive charge to the cap structure. Additional 2’-<i>O</i>-methylations (orange) can be found on the first few nucleotides. (B) Nomenclature of the different cap structures. (C) Aliquots (2ÎŒg) of the purified preparations of DXO and mutant DXO protein (D236A/E253A) were analyzed by electrophoresis through a 12.5% polyacrylamide gel containing 0.1% SDS and visualized with Coomassie Blue Dye. The positions and sizes (in kDa) of the size markers are indicated on the left. (D) RNAs harbouring different cap structures were transcribed and capped (incorporation of [α-<sup>32</sup>P]GTP) <i>in vitro</i>. They were then subjected to degradation by different enzymes, and reaction products were separated by thin layer chromatography. Lanes 1–4 show reaction products after treatment of differently capped RNAs with Nuclease P1. Degradation products after incubation of differently capped RNAs with purified DXO are shown in lanes 5–12. The origin of spotting and dinucleotide identities are listed on the left. NOTE: During the preparation of differently capped RNAs, only approximately 30% of GpppN-RNA was methylated to form GpppN<sub>m</sub>-RNA (lanes 2,7–8), resulting in a mixture of GpppN-RNA and GpppN<sub>m</sub>-RNA. Degradation products observed in lane 8 are due to the degradation of GpppN-RNA.</p

    Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas

    No full text
    <div><p>Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein–Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.</p></div

    The presence of a 2’-<i>O</i>-methylation blocks the exoribonuclease activity of DXO.

    No full text
    <p>(A) The exoribonuclease activity of DXO toward different substrates was studied. 2ÎŒM of DXO were incubated with 100nM of the 30‐nt 3â€Č‐radiolabelled RNA substrate harbouring either no 2’-<i>O</i>-methylation, a 2’-<i>O</i>-methylation on the first nucleotide or a 2’-<i>O</i>-methylation on the 16<sup>th</sup> nucleotide. The reactions were incubated at 37°C for 0 to 64 minutes before being stopped by adding 100mM EDTA. Products were separated on a 20% denaturing polyacrylamide gel. (B) To ensure that the observed exoribonuclease activity is specific to the DXO protein, a catalytically inactive mutant (D236A-E253A) was used in an exoribonuclease assay with 5’ monophosphorylated RNA. Wild-type DXO readily degrades this RNA substrate, whereas almost no cleavage products are observed with the inactive mutant.</p

    2'-<i>O</i>-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO

    No full text
    <div><p>The 5' RNA cap structure (<sup>m7</sup>GpppRNA) is a key feature of eukaryotic mRNAs with important roles in stability, splicing, polyadenylation, mRNA export, and translation. Higher eukaryotes can further modify this minimal cap structure with the addition of a methyl group on the ribose 2'-<i>O</i> position of the first transcribed nucleotide (<sup>m7</sup>GpppN<sub>m</sub>pRNA) and sometimes on the adjoining nucleotide (<sup>m7</sup>GpppN<sub>m</sub>pN<sub>m</sub>pRNA). In higher eukaryotes, the DXO protein was previously shown to be responsible for both decapping and degradation of RNA transcripts harboring aberrant 5’ ends such as pRNA, pppRNA, GpppRNA, and surprisingly, <sup>m7</sup>GpppRNA. It was proposed that the interaction of the cap binding complex with the methylated cap would prevent degradation of <sup>m7</sup>GpppRNAs by DXO. However, the critical role of the 2’-<i>O</i>-methylation found in higher eukaryotic cap structures was not previously addressed. In the present study, we demonstrate that DXO possesses both decapping and exoribonuclease activities toward incompletely capped RNAs, only sparing RNAs with a 2’-<i>O</i>-methylated cap structure. Fluorescence spectroscopy assays also revealed that the presence of the 2’-<i>O</i>-methylation on the cap structure drastically reduces the affinity of DXO for RNA. Moreover, immunofluorescence and structure-function assays also revealed that a nuclear localisation signal is located in the amino-terminus region of DXO. Overall, these results are consistent with a quality control mechanism in which DXO degrades incompletely capped RNAs.</p></div

    Model of DXO activity on RNA.

    No full text
    <p>DXO removes incomplete cap structures such as capG (right) and cap0 (middle) and degrades the resulting uncapped mRNA, whereas RNAs harboring a cap1 structure (left) are unaffected. RNAs with capG and cap0 structures can be either capping intermediates or non-self RNAs.</p
    corecore