26 research outputs found

    Inactivation of Pleiotropic Regulator 1 reveals p53-dependent Control of Cell Proliferation and Apoptosis by the Pso4-complex

    Get PDF
    Mammalian Pleiotropic Regulator PLRG-1 was initially identified as a component of the spliceosome and belongs to a highly conserved family of seven WD40 domain containing proteins in eukaryotes (Ajuh et al., 2000; Ajuh et al., 2001). Founding members of this WD40-repeat protein family, PRL1 and PRL2, were first identified by T-DNA tagging in Arabidopsis thaliana (Nemeth et al., 1998). Whereas in plants the PRL genes are uniquely duplicated, in yeast, C. elegans and mammals there are only single orthologues of the Pleiotropic Regulator family which play important roles in the control of cellular homeostasis by forming at least in mammals, a complex with Pso4 and the cell division and cycle 5 homolog (CDC5L), that regulates both pre-mRNA splicing. To characterize the role of PLRG-1 in vivo, in the present study, I shown that inactivation of PLRG-1 results in embryonic lethality 1.5 days postfertilization in mice, indicating a fundamental role for PLRG-1 in early cell cycle events. Studies on heart- and neuron-specific PLRG-1 knockout mice revealed that massive apoptosis was responsible for their premature death. Moreover, PLRG-1-deficient mouse embryonic fibroblasts (MEFs) fail to enter S-phase upon serum stimulation and show increased apoptosis resulting from enhanced p53 phosphorylation and stabilization. Interestingly, p53-phosphatase WIP1 was seen to interact with CDC5L in wild-type, but not in PLRG-1-deficient MEFs due to cytosolic translocation of CDC5L. p53 downregulation rescues lethality in PLRG-1-deficient MEFs, showing that apoptosis resulting from PLRG-1-deficiency is p53 dependent Taken together, it is shown that the Pso4-CDC5LPLRG-1 complex controls cell proliferation and apoptosis by novel integration of pre-mRNA splicing and DNA repair via a p53-phosphorylation-dependent pathway, thus providing the first evidence for Pso4-complex regulation of p53

    Central Acting Hsp10 Regulates Mitochondrial Function, Fatty Acid Metabolism, and Insulin Sensitivity in the Hypothalamus

    Get PDF
    Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance

    Insulin: Schützender Anpassungsmechanismus im Gehirn

    No full text

    Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?

    No full text
    The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD) or even Huntington’s (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases

    PLRG1 Is an Essential Regulator of Cell Proliferation and Apoptosis during Vertebrate Development and Tissue Homeostasis▿ †

    No full text
    PLRG1, an evolutionarily conserved component of the spliceosome, forms a complex with Pso4/SNEV/Prp19 and the cell division and cycle 5 homolog (CDC5L) that is involved in both pre-mRNA splicing and DNA repair. Here, we show that the inactivation of PLRG1 in mice results in embryonic lethality at 1.5 days postfertilization. Studies of heart- and neuron-specific PLRG1 knockout mice further reveal an essential role of PLRG1 in adult tissue homeostasis and the suppression of apoptosis. PLRG1-deficient mouse embryonic fibroblasts (MEFs) fail to progress through S phase upon serum stimulation and exhibit increased rates of apoptosis. PLRG1 deficiency causes enhanced p53 phosphorylation and stabilization in the presence of increased γ-H2AX immunoreactivity as an indicator of an activated DNA damage response. p53 downregulation rescues lethality in both PLRG1-deficient MEFs and zebrafish in vivo, showing that apoptosis resulting from PLRG1 deficiency is p53 dependent. Moreover, the deletion of PLRG1 results in the relocation of its interaction partner CDC5L from the nucleus to the cytoplasm without general alterations in pre-mRNA splicing. Taken together, the results of this study identify PLRG1 as a critical nuclear regulator of p53-dependent cell cycle progression and apoptosis during both embryonic development and adult tissue homeostasis
    corecore