10 research outputs found

    Predição de classes de solo em uma paisagem complexa no Sul do Brasil

    Get PDF
    The objective of this work was to evaluate the use of covariate selection by expert knowledge on the performance of soil class predictive models in a complex landscape, in order to identify the best predictive model for digital soil mapping in the Southern region of Brazil. A total of 164 points were sampled in the field using the conditioned Latin hypercube, considering the covariates elevation, slope, and aspect. From the digital elevation model, environmental covariates were extracted, composing three sets, made up of: 21 covariates, covariates after the exclusion of the multicollinear ones, and covariates chosen by expert knowledge. Prediction was performed with the following models: decision tree, random forest, multiple logistic regression, and support vector machine. The accuracy of the models was evaluated by the kappa index (K), general accuracy (GA), and class accuracy. The prediction models were sensitive to the disproportionate sampling of soil classes. The best predicted map achieved a GA of 71% and K of 0.59. The use of the covariate set chosen by expert knowledge improves model performance in predicting soil classes in a complex landscape, and random forest is the best model for the spatial prediction of soil classes.O objetivo deste trabalho foi avaliar o uso da seleção de covariáveis por conhecimento especializado no desempenho de modelos de predição de classes de solos em uma paisagem complexa, para identificar o melhor modelo preditivo para o mapeamento digital de solos na região Sul do Brasil. Um total de 164 pontos foram amostrados em campo, com uso do hipercubo latino condicionado, tendo-se considerado as covariáveis elevação, declividade e aspecto. A partir do modelo digital de elevação, extraíram-se as covariáveis ambientais que compuseram três conjuntos, formados por: 21 covariáveis, covariáveis após exclusão das multicolineares e covariáveis escolhidas por conhecimento especializado. A predição foi realizada com os seguintes modelos: árvore de decisão, floresta aleatória, regressão logística múltipla e máquina de vetor de suporte. A acurácia dos modelos foi avaliada pelo índice kappa (K), pela acurácia geral (AG) e pela acurácia da classe. Os modelos de previsão foram sensíveis à amostragem desproporcional de classes de solo. O melhor mapa predito obteve AG de 71% e K de 0,59. O uso do conjunto de covariáveis escolhido pelo conhecimento especializado melhora o desempenho do modelo em prever as classes de solo em uma paisagem complexa, e floresta aleatória é o melhor modelo para previsão espacial das classes de solo

    Potential of Spectroradiometry to Classify Soil Clay Content

    No full text
    ABSTRACT Diffuse reflectance spectroscopy (DRS) is a fast and cheap alternative for soil clay, but needs further investigation to assess the scope of application. The purpose of the study was to develop a linear regression model to predict clay content from DRS data, to classify the soils into three textural classes, similar to those defined by a regulation of the Brazilian Ministry of Agriculture, Livestock and Food Supply. The DRS data of 412 soil samples, from the 0.0-0.5 m layer, from different locations in the state of Rio Grande do Sul, Brazil, were measured at wavelengths of 350 to 2,500 nm in the laboratory. The fitting of the linear regression model developed to predict soil clay content from the DRS data was based on a R2 value of 0.74 and 0.75, with a RMSE of 7.82 and 8.51 % for the calibration and validation sets, respectively. Soil texture classification had an overall accuracy of 79.0 % (calibration) and 80.9 % (validation). The heterogeneity of soil samples affected the performance of the prediction models. Future studies should consider a previous classification of soil samples in different groups by soil type, parent material and/or sampling region

    Assessment of Digital Elevation Model for Digital Soil Mapping in a Watershed with Gently Undulating Topography

    No full text
    ABSTRACT Terrain attributes (TAs) derived from digital elevation models (DEMs) are frequently used in digital soil mapping (DSM) as auxiliary covariates in the construction of prediction models. The DEMs and information extracted from it may be limited with regard to the spatial resolution and error magnitude, and can differ in the behavior of terrain features. The objective of this study was to evaluate the quality and limitations of free DEM data and to evaluate a topographic survey (TS) underlying the choice of a more appropriate model, for use in DSMs at a scale of 1:10,000. The study was conducted in an area of 937 ha in the watershed of Lajeado Giruá, in southern Brazil. The DEMs: DEM-TS, DEM-Topographic Map (TM), DEM-ASTER, DEM-SRTM, and DEM-TOPODATA were evaluated with regard to the precision elevation by statistical tests based on field reference points, the root mean square error (RMSE), identification of the number and size of spurious depressions, and the application of the Brazilian Cartographic Accuracy Standards Law (BCASL) to define the scale of each DEM. In addition, the TA derived from each DEM was compared with the TA from DEM-TS, considered to be terrain reality. The results showed that the elevation data of DEM-TS had the best quality (RMSE = 1.93 m), followed by DEM-SRTM (RMSE = 5.95 m), DEM-Topographic Map (RMSE = 8.28 m), DEM-TOPODATA (RMSE = 9.78 m) and DEM-ASTER (RMSE = 15.57 m). The DEM-TS was well-represented at a 1:10,000 scale, while the DEM-Topographic Map and DEM-SRTM fitted 1:50,000, the DEM-TOPODATA 1:50,000 and the DEM-ASTER a 1:100,000 scale. The results of DEM-SRTM and DEM-TOPODATA were closest to terrain reality (DEM-TS) and had the lowest number of spurious depressions and RMSE values for each evaluated attribute, but were inadequate for not fitting detailed scales compatible with small areas. The techniques for the acquisition of elevation data of each DEM and mainly the flat to gently undulating topography were factors that influenced the results. For a DSM at a scale of 1:10,000 in similar areas, the most appropriate model is DEM-TS

    The Brazilian Soil Spectral Library (VIS-NIR-SWIR-MIR) Database: Open Access

    No full text
    Abstract: NEW VERSION V.002 (Some Lat Long Coordinates added). Soil spectroscopy has emerged as a solution to the limitations associated with traditional soil surveying and analysis methods, addressing the challenges of time and financial resources. Analyzing the soil's spectral reflectance enables to observe the soil composition and simultaneously evaluate several attributes because the matter, when exposed to electromagnetic energy, leaves a "spectral signature" that makes such evaluations possible. The Soil Spectral Library (SSL) consolidates soil spectral patterns from a specific location, facilitating accurate modeling and reducing time, cost, chemical products, and waste in surveying and mapping processes. Therefore, an open access SSL benefits society by providing a fine collection of free data for multiple applications for both research and commercial use. BSSL Description and Usefulness The Brazilian Soil Spectral Library (BSSL), available at https://bibliotecaespectral.wixsite.com/english, is a comprehensive repository of soil spectral data. Coordinated by JAM Demattê and managed by the GeoCiS research group, the BSSL was initiated in 1995 and published by Demattê and collaborators in 2019. This initiative stands out due to its coverage of diverse soil types, given Brazil's significance in the agricultural and environmental domains and its status as the fifth largest territory in the world (IBGE, 2023). In addition, a Middle Infrared (MIR) dataset has been published (Mendes et al., 2022), part of which is included in this repository. The database covers 16,084 sites and includes harmonized physicochemical and spectral (Vis-NIR-SWIR and MIR range) soil data from various sources at 0-20 cm depth. All soil samples have Vis-NIR-SWIR data, but not all have MIR data. The BSSL provides open and free access to curated data for the scientific community and interested individuals. Unrestricted access to the BSSL supports researchers in validating their results by comparing measured data with predicted values. This initiative also facilitates the development of new models and the improvement of existing ones. Moreover, users can employ the library to test new models and extract information about previously unknown soil properties. With its extensive coverage of tropical soil classes, the BSSL is considered one of the most significant soil spectral libraries worldwide, with 42 institutions and 61 researchers participating. However, 47 collaborators from 29 institutions have authorized the data opening. Other researchers can also provide their data upon request through the coordinator of this initiative. The data from the BSSL project can also help wet labs to improve their analytical capabilities, contributing to developing hybrid wet soil laboratory techniques and digital soil maps while informing decision-makers in formulating conservation and land use policies. The soil's capacity for different land uses promotes soil health and sustainability. Coverage The BSSL data covers all regions of Brazil, including 26 states and the Federal District. It is in a .xlsx format and has a total size of 305 Mb. The table is structured in sheets with rows for observations, and columns, representing various soil attributes in the surface layer, from 0 to 20 cm depth. The database includes environmental and physicochemical properties (22 columns and 16,084 rows), Vis-NIR-SWIR spectral bands (2151 columns and 16,084 rows), and MIR channels (681 columns and 1783 rows). An ID unique column can merge the sheet for each attribute or spectral range. Accessing original data source Using these data requires their reference in any situation under copyright infringement penalty. Three mechanisms are available for users to reach the original and complete data contributors: a) Refer to sheet two for name and code-based searches; b) Visit the website https://bibliotecaespectral.wixsite.com/english/lista-de-cedentes or locate the contributors' list by Brazilian state; c) Visit the website of the Brazilian Soil Spectral Service – Braspecs http://www.besbbr.com.br/, an online platform for soil analysis that uses part of the current SSL (Demattê et al., 2022) - It was developed and managed by GeoCiS. There, owners from all over the country can be found. Proceeding to data analysis We registered and organized the samples at the ESALQ/USP Soil Laboratory. Some samples arrived without preliminary data analyses, so we analyzed them for soil organic matter (SOM), granulometry, cation exchange capacity (CEC), pH in water, and the presence of Ca, Mg, and Na, following the recommendations of Donagemma et al. (2011). The GeoCiS research group performed spectral analyses following the procedures described by Bellinaso et al. (2010). Demattê et al. (2019) provide detailed methods for sampling, preparation, and soil analyses, including reflectance spectroscopy. Latitude and longitude data can be requested directly from the data owner. In summary, the following steps are involved in data acquisition. a) We subjected the soil samples to a preliminary treatment, which involved drying them in an oven at 45°C for 48 hours, grinding them, and sieving them through a 2mm mesh; b) We placed the samples in Petri dishes with a diameter of 9 cm and a height of 1.5 cm; c) We homogenized and flattened the surface of the samples to reduce the shading caused by larger particles or foreign bodies, making them ready for spectral readings; d) The spectral analyses took place in a darkened room to avoid interference from natural light. We used a computer to record the electromagnetic pulses through an optical fiber connected to the sensor, capturing the spectral response of the soil sample; e) We obtained reflectance data in the Visible-Near Infrared-Shortwave Infrared (Vis-NIR-SWIR) range using a FieldSpec 3 spectroradiometer (Analytical Spectral Devices, ASD, Boulder, CO), which operates in the spectral range from 350 to 2500 nm; f) The sensor had a spectral resolution of 3 nm from 350-700 nm and 10 nm from 700-2500 nm, automatically interpolated to 1 nm spectral resolution in the output data, resulting in 2151 channels (or bands); and g) We positioned the lamps at 90° from each other and 35 cm away from the sample, with a zenith angle of 30°. The sensor captured the light reflected through the fiber optic cable, which was positioned 8 cm from the sample's surface. We used two 50W halogen lamps as the power source for the artificial light. It's important to note that we took three readings for each sample at different positions by rotating the Petri dish by 90°. Each reading represents the average of 100 scans taken by the sensor. From these three readings, we calculated the final spectrum of the samples. Notably, the laboratory's equipment and procedures for soil sample spectral analyses followed the ASD's recommendations, particularly about sensor calibration using a white spectralon plate as a 100% reflectance standard. For the analysis in the Middle Infrared (MIR) spectral region, we followed the procedures outlined by Mendes et al. (2022). We milled the soil fraction smaller than 2 mm, sieved it to 0.149 mm, and scanned it using a Fourier Transform Infrared (FT-IR) alpha spectroradiometer (Bruker Optics Corporation, Billerica, MA 01821, USA) equipped with a DRIFT accessory. The spectroradiometer measured the diffuse reflectance using Fourier transformation in the spectral range from 4000 cm-1 to 600 cm-1, with a resolution of 2 cm-1. We conducted these measurements in the Geotechnology Laboratory of the Department of Soil Science at Esalq-USP. We took the average of 32 successive readings to obtain a soil spectrum. Sensor calibration took place before each spectral acquisition of the sample set by standardizing it against the maximum reflectance of a gold plate. Dataset characterization The database, named BSSL_DB_Key_Soils, has five sheets containing the key soil attributes, Vis-NIR-SWIR and MIR datasets, descriptions of the contributors and the proximal sensing methods used for spectral soil analysis. The sheets can be linked by "ID_Unique" columns, which bring the corresponding rows according to the data type. Some cells are empty because collaborators have already provided data in this way. However, we have decided to keep them in the database because they have other soil key attributes. Every Column in the data sheets is described as follows: Sheet 1. BSSL_Soil_Attributes_Dataset Column 1. ID_unique: Sequential code assigned to every record; Column 2. Owner code: Acronym assigned to each contributor who allowed access to their proprietary data; Column 3. Vis_NIR_SWIR_availability: availability of spectral data in visible, near-infrared, and shortwave infrared ranges; Column 4. MIR_availability: availability of spectral data in the middle infrared range; Column 5. Sampling: type of soil sampling; Column 6. Depth_cm: soil surface layer depth in centimeters; Column 7. Lat: Latitude; Column 8. Lat: Longitude; Column 9. Region: Brazilian geographical region of samples' source; Column 10. Municipality: Brazilian municipality of samples' source; Column 11. State: Brazilian Federation Unit of samples' source; Column 12. Vegetation: type of vegetal covering; Column 13. Biome: groupings of ecosystems that share similar characteristics and span different regions; Column 14. Geology: type of rock matter from local soil sampling; Column 15. Sand_gkg: Content of the soil fraction with grain size between 2 and 0.053 mm, expressed in grams per kilogram; Column 16. Clay_gkg: Content of soil fraction with grain size smaller than 0.002 mm, expressed in grams per kilogram; Column 17. SOM_gkg: Soil organic matter content, expressed in grams per kilogram; Column 18. pH_H2O: Soil hydrogen ion potential measured in water; Column 19. Ca_mmolkg: Exchangeable calcium content in the soil, expressed in millimoles per kilogram; Column 20. Mg_mmolkg: Exchangeable magnesium content in the soil, expressed in millimoles per kilogram; Column 21. Na_mmolkg: Exchangeable sodium content in the soil, expressed in millimoles per kilogram; and Column 22. CEC_Ph7_mmolkg: Cation exchange capacity of the soil at neutral pH, expressed in millimoles per kilogram. Sheet 2. BSSL_Vis_NIR_SWIR_Dataset Column 1. ID_Unique: Sequential code assigned to every record; Column 2. Owner code: Acronym assigned to each contributor who allowed access to their proprietary data; and Column 3 – 2153. 350 – 2500: Reflectance in 2151 spectral bands in nanometers from visible and near-infrared to shortwave infrared range (350 – 2500 nm). Sheet 3. BSSL_MIR_Dataset Column 1. ID_Unique: Sequential code assigned to every record; Column 2. Owner_code: Acronym assigned to each contributor who allowed access to their proprietary data; and Column 3 – 683. 4000 – 600: Reflectance in 681 spectral bands in centimeters in the middle infrared range (4000 – 600 cm-1). Sheet 4. Contributors Column 1. Owner_code: Acronym assigned to each contributor who allowed access to their proprietary data, which identifies and links it to datasets; Column 2. Owner: Name of the collaborator who agreed to the availability of the data; Column 3. E-mail: Contact the e-mail of the owner for more information or a data request; Column 4. Institution: Contributor's affiliation; Column 5. Samples NIR: Number of Vis-NIR-SWIR samples sent to the BSSL collection; Column 6. Samples MIR: Number of MIR samples sent to the BSSL collection; Sheet 5. Metadata Column 1. Material and Methods: Description of procedures performed for soil data analyses Expectation and Social Relevance These data can impact various disciplines such as soil surveying, soil attribute mapping, soil analysis, soil mineralogy, soil management zones, precision agriculture, development of new datasets and scientific groups, and others. We expect this contribution to be valuable and useful to the soil research community in promoting this non-renewable natural resource's conservation and sustainable use.Acknowledgments Geotechnologies in Soil Sciences Research Group - GeoCiS Brazilian Society of Soil Science - SBCS Research Support Foundation of the State of São Paulo - FAPESP grant number #2021/05129-8 Higher Education Personal Improvement Coordination - CAPES National Council for Scientific and Technological Development CNPq Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo. Grupo de Pesquisa Geotecnologias em Ciências do Solo - GeoCiS Sociedade Brasileira de Ciência do Solo - SBCS Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (#2021/05129-8) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo

    The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges

    No full text
    Made available in DSpace on 2019-10-06T16:42:11Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-11-15Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The present study was developed in a joint partnership with the Brazilian pedometrics community to standardize and evaluate spectra within the 350–2500 nm range of Brazilian soils. The Brazilian Soil Spectral Library (BSSL) began in 1995, creating a protocol to gather soil samples from different locations in Brazil. The BSSL reached 39,284 soil samples from 65 contributors representing 41 institutions from all 26 states. Through the BSSL spectra database, it was possible to estimate important soil attributes, such as clay, sand, soil organic carbon, cation exchange capacity, pH and base saturation, resulting in differences among the multi-scale models taking Brazil (overall), regional and state scale. In general, spectral descriptive and quantitative behavior indicated important relationship with physical, chemical and mineralogical properties. Statistical analyses showed that six basic patterns of spectral signatures represent the Brazilian soils types and that environmental conditions explain the differences in spectra. This study demonstrates that spectroscopy analyses along with the establishment of soil spectral libraries are a powerful technique for providing information on a national and regional levels. We also developed an interactive online platform showing soil sample locations and their contributors. As soil spectroscopy is considered a fast, simple, accurate and nondestructive analytical procedure, its application may be integrated with wet analysis as an alternative to support the sustainable management of soils.Department of Soil Science Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP), Ave. Pádua Dias 11, Cx. Postal 9Department of Soil Federal University of Santa Maria, Av. Roraima 1000Geographical Sciences Department Federal University of Pernambuco, Av. Ac. Hélio Ramos, s/nDepartment of Agronomy State University of Maringá, Av. Colombo 5790Department of Agriculture Biodiversity and Forestry Federal University of Santa Catarina, Rodovia Ulysses Gaboardi 3000 - Km 3Federal Rural University of Amazon, Ave. Presidente Tancredo Neves 2501Faculty of Agronomy and Veterinary Medicine University of BrasíliaEMBRAPA - Solos, R. Antônio Falcão, 402, Boa ViagemCenter of Nuclear Energy in Agriculture (CENA) USP, Av. Centenário 303CDRS/Secretary of Agriculture of São Paulo State, R. Campos Salles 507Department of Soils Federal University of Viçosa, Ave. Peter Henry Rolfs s/nEMBRAPA – Informática Agropecuária, Ave. André Tosello, 209Department of Nuclear Energy Federal University of Pernambuco, Av. Prof. Luis Freire 1000Department of Geography Federal University of Rio Grande do Norte, R. Joaquim Gregório s/nAgronomic Institute of Campinas (IAC), Ave. Barão de Itapura 1481Institute of Agricultural Sciences Federal Rural University of Amazônia, Ave. Presidente Tancredo Neves 2501, 66.077-830Department of Soil Science Federal University of LavrasFederal University of Mato Grosso, Cuiabá, Av. Fernando Corrêa da Costa 2367Department of Soils Federal Rural University of Rio de Janeiro, Rodovia BR 465, Km 07 s/nSoil and Water Sciences Department University of Florida, 2181 McCarty Hallr, PO Box 110290EMBRAPA - Solos, R. Jardim Botânico, 1024Department of Soils and Fertilizers School of Agricultural and Veterinary Studies São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane s/nFederal University of Sergipe, Av. Marechal Rondon s/nGraduate Program in Earth Sciences (Geochemistry) Department of Geochemistry Federal Fluminense University, Outeiro São João Batista, s/nFederal Institute of the Southeast of Minas Gerais, R. Monsenhor José Augusto 204Federal University of Rio Grande do Norte, R. Joaquim Gregório s/nFederal University of PiauíEMBRAPA Milho e Sorgo, Rod MG 424 Km 45Institute of Agricultural Sciences Federal University of Jequitinhonha e Mucuri Valleys, Ave. Ver. João Narciso 1380Department of Biosystems Engineering ESALQ USP, Ave. Pádua Dias 11, Cx. Postal 9Federal University of Acre, Rodovia BR 364 Km 04Federal University of Amazonas, Av. General Rodrigo O. J. Ramos 1200EMBRAPA Clima Temperado, BR-392, km 78Department of Agronomy Federal Rural University of Pernambuco, R. Manuel de Medeiros s/nEMBRAPA Cocais, Quadra 11, Av. São Luís Rei de França 4Paraense Emílio Goeldi Museum, Av. Gov. Magalhães Barata 376Exata Laboratory, Rua Silvestre Carvalho Q 11Federal University of Rondônia, BR 364, Km 9.5Nacional Institute for Amazonian Research, Ave. André Araújo 2936Department of Forestry Sciences ESALQ-USP, Ave. Pádua Dias 11, Cx. Postal 9Department of Soils and Fertilizers School of Agricultural and Veterinary Studies São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane s/nFAPESP: 2014/22262-0FAPESP: 2016/26176-6FAPESP: 2017/03207-
    corecore