323 research outputs found

    Executive function after exhaustive exercise

    Get PDF
    PurposeFindings concerning the effects of exhaustive exercise on cognitive function are somewhat equivocal. The purpose of this study was to identify physiological factors that determine executive function after exhaustive exercise.MethodsThirty-two participants completed the cognitive tasks before and after an incremental exercise until exhaustion (exercise group: N = 18) or resting period (control group N = 14). The cognitive task was a combination of a Spatial Delayed-Response (Spatial DR) task and a Go/No-Go task, which requires executive function. Cerebral oxygenation and skin blood flow were monitored during the cognitive task over the prefrontal cortex. Venous blood samples were collected before and after the exercise or resting period, and blood catecholamines, serum brain-derived neurotrophic factor, insulin-like growth hormone factor 1, and blood lactate concentrations were analyzed.ResultsIn the exercise group, exhaustive exercise did not alter reaction time (RT) in the Go/No-Go task (pre: 861 ± 299 ms vs. post: 775 ± 168 ms) and the number of error trials in the Go/No-Go task (pre: 0.9 ± 0.7 vs. post: 1.8 ± 1.8) and the Spatial DR task (pre: 0.3 ± 0.5 vs. post: 0.8 ± 1.2). However, ΔRT was negatively correlated with Δcerebral oxygenation (r = −0.64, P = 0.004). Other physiological parameters were not correlated with cognitive performance. Venous blood samples were not directly associated with cognitive function after exhaustive exercise.ConclusionThe present results suggest that recovery of regional cerebral oxygenation affects executive function after exhaustive exercise

    Congenital granular cell epulis

    Get PDF

    Modulation of Hanle magnetoresistance in an ultrathin platinum film by ionic gating

    Full text link
    Hanle magnetoresistance (HMR) is a type of magnetoresistance where interplay of the spin Hall effect, Hanle-type spin precession, and spin-dependent scattering at the top/bottom surfaces in a heavy metal controls the effect. In this study, we modulate HMR in ultrathin Pt by ionic gating, where the surface Rashba field created by a strong electric field at the interface between the ionic gate and Pt plays the dominant role in the modulation. This finding can facilitate investigations of gate-tunable, spin-related effects and fabrication of spin devices.Comment: 10 pages, 3 figures (To appear in Applied Physics Express
    corecore