39 research outputs found

    Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation

    Get PDF
    A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair

    Aspirin-induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin-1 thus inhibiting monocyte vascular infiltration

    No full text
    There are conflicting data regarding whether netrin-1 retards or accelerates atherosclerosis progression, as it can lead either to monocyte repulsion from or retention within plaques depending on its cellular source. We investigated the effect of aspirin, which is widely used in cardiovascular prophylaxis, on the synthesis of different isoforms of netrin-1 by endothelial cells under pro-inflammatory conditions, and defined the net effect of aspirin-dependent systemic modulation of netrin-1 on atherosclerosis progression.Netrin-1 synthesis was studied in vitro using human endothelial cells stimulated with TNF-α, with or without aspirin treatment. In vivo experiments were conducted in ApoE(-/-) mice fed with a high-fat diet (HFD), receiving either aspirin or clopidogrel.TNF-α-induced NF-κB activation up-regulated the nuclear isoform of netrin-1, while simultaneously reducing secreted netrin-1. Down-regulation of the secreted isoform compromised the chemorepellent action of the endothelium against monocyte chemotaxis. Aspirin counteracted TNF-α-mediated effects on netrin-1 synthesis by endothelial cells through COX-dependent inhibition of NF-κB and concomitant histone hyperacetylation. Administration of aspirin to ApoE(-/-) mice on HFD increased blood and arterial wall levels of netrin-1 independently of its effects on platelets, accompanied by reduced plaque size and content of monocytes/macrophages, compared with untreated or clopidogrel-treated mice. In vivo blockade of netrin-1 enhanced monocyte plaque infiltration in aspirin-treated ApoE(-/-) mice.Aspirin counteracts down-regulation of secreted netrin-1 induced by pro-inflammatory stimuli in endothelial cells. The aspirin-dependent increase of netrin-1 in ApoE(-/-) mice exerts anti-atherogenic effects by preventing arterial accumulation of monocytes

    Rats fed diets with different energy contribution from fat do not differ in adiposity

    No full text
    Objective: To determine whether rats reaching the same body mass, having been fed either a low-fat (LFD) or a high-fat diet (HFD), differ in white adipose tissue (WAT) deposition. Methods: In experiment 1, 22 Sprague-Dawley rats of the same age were divided into 11 rats with body mass below the batch median and fed a HFD, and 11 above the median and fed a LFD. In experiment 2, 20 Sprague-Dawley rats of the same age and starting body mass were randomised to either a HFD or LFD. When all groups reached similar final body mass, WAT was quantified using magnetic resonance imaging (MRI), dissection, and plasma leptin. Results: In experiment 1, both groups reached similar final body mass at the same age; in experiment 2 the HFD group reached similar final body mass earlier than the LFD group. There were no significant differences in WAT as assessed by MRI or leptin between the HFD and LFD groups in both experiments. Dissection revealed a trend for higher retroperitoneal and epididymal adiposity in the HFD groups in both experiments. Conclusions: We conclude that at similar body mass, adiposity is independent of the macronutrient composition of the feeding regimen used to achieve it
    corecore