11,238 research outputs found

    Stability of the r-modes in white dwarf stars

    Get PDF
    Stability of the r-modes in rapidly rotating white dwarf stars is investigated. Improved estimates of the growth times of the gravitational-radiation driven instability in the r-modes of the observed DQ Her objects are found to be longer (probably considerably longer) than 6x10^9y. This rules out the possibility that the r-modes in these objects are emitting gravitational radiation at levels that could be detectable by LISA. More generally it is shown that the r-mode instability can only be excited in a very small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth times of this instability are so long that these conditions must persist for a very long time (t>10^9y) to allow the amplitude to grow to a dynamically significant level. This makes it extremely unlikely that the r-mode instability plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte

    Adiabatic radio frequency potentials for the coherent manipulation of matter waves

    Full text link
    Adiabatic dressed state potentials are created when magnetic sub-states of trapped atoms are coupled by a radio frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one to implement numerous novel configurations, including double wells, Mach-Zehnder and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips.Comment: 13 pages, 2 figure

    Settling tracer spheroids in vertical turbulent channel flows

    Get PDF
    The motion of particles settling in turbulence is an intriguing problem, which is relevant to an in-depth understanding of planktons in marine flows or the design of photobioreactors. This work studies the motion, orientation and distribution of inertia-less spheroidal particles settling in vertical channel flows by direct numerical simulations. We show that, compared to spherical tracers, the settling velocity of spheroidal tracers is enhanced due to preferential orientation and local clustering (not due to particle inertia, in the present case). Prolate spheroids tend to align their symmetry axes in the direction of gravity while oblate ones align perpendicular to it. Both kinds of particles attain a larger slip velocity in the direction of gravity and, therefore, settle faster. We also show that particles sample preferentially regions of high fluid velocity in downward flow and regions of low fluid velocity in upward flow. Such preferential sampling, which also contributes to the enhancement of settling, is the result of clustering. Besides, tracer particles are observed to accumulate in the channel center in downward flow and near the wall in upward flow: We show that tracer transport in the wall-normal direction is controlled by the particle- to-fluid slip velocity and by clustering. The slip velocity dominates the transport initially, but tracers increasingly cluster in regions with opposite flow direction as they accumulate either in the channel center or near the wall. Clustering appears to be associate with the coherent structures that characterize wall turbulence, and tracer distribution in the wall-normal direction is found to reach a steady state when the two qualitatively different mechanisms balance each other

    Crustal failure during binary inspiral

    Full text link
    We present the first fully relativistic calculations of the crustal strain induced in a neutron star by a binary companion at the late stages of inspiral, employing realistic equations of state for the fluid core and the solid crust. We show that while the deep crust is likely to fail only shortly before coalescence, there is a large variation in elastic strain, with the outermost layers failing relatively early on in the inspiral. We discuss the significance of the results for both electromagnetic and gravitational-wave astronomy.Comment: 5 pages, 3 eps figure

    Tidal deformations of neutron stars: The role of stratification and elasticity

    Full text link
    We discuss the response of neutron stars to the tidal interaction in a compact binary system, as encoded in the Love number associated with the induced deformation. This problem is of interest for gravitational-wave astronomy as there may be a detectable imprint on the signal from the late stages of binary coalescence. Previous work has focussed on simple barotropic neutron star models, providing an understanding of the role of the stellar compactness and overall density profile. We add realism to the discussion by developing the framework required to model stars with varying composition and an elastic crust. These effects are not expected to be significant for the next generation of detectors but it is nevertheless useful to be able to quantify them. Our results show that (perhaps surprisingly) internal stratification has no impact whatsoever on the Love number. We also show that crust elasticity provides a (predictably) small correction to existing models.Comment: 16 pages, RevTeX, 3 eps figure

    Fundamental properties and applications of quasi-local black hole horizons

    Full text link
    The traditional description of black holes in terms of event horizons is inadequate for many physical applications, especially when studying black holes in non-stationary spacetimes. In these cases, it is often more useful to use the quasi-local notions of trapped and marginally trapped surfaces, which lead naturally to the framework of trapping, isolated, and dynamical horizons. This framework allows us to analyze diverse facets of black holes in a unified manner and to significantly generalize several results in black hole physics. It also leads to a number of applications in mathematical general relativity, numerical relativity, astrophysics, and quantum gravity. In this review, I will discuss the basic ideas and recent developments in this framework, and summarize some of its applications with an emphasis on numerical relativity.Comment: 14 pages, 2 figures. Based on a talk presented at the 18th International Conference on General Relativity and Gravitation, 8-13 July 2007, Sydney, Australi

    Bulk viscosity of superfluid neutron stars

    Full text link
    The hydrodynamics, describing dynamical effects in superfluid neutron stars, essentially differs from the standard one-fluid hydrodynamics. In particular, we have four bulk viscosity coefficients in the theory instead of one. In this paper we calculate these coefficients, for the first time, assuming they are due to non-equilibrium beta-processes (such as modified or direct Urca process). The results of our analysis are used to estimate characteristic damping times of sound waves in superfluid neutron stars. It is demonstrated that all four bulk viscosity coefficients lead to comparable dissipation of sound waves and should be considered on the same footing.Comment: 11 pages, 1 figure, this version with some minor stylistic changes is published in Phys. Rev.

    On the structure of the new electromagnetic conservation laws

    Full text link
    New electromagnetic conservation laws have recently been proposed: in the absence of electromagnetic currents, the trace of the Chevreton superenergy tensor, HabH_{ab} is divergence-free in four-dimensional (a) Einstein spacetimes for test fields, (b) Einstein-Maxwell spacetimes. Subsequently it has been pointed out, in analogy with flat spaces, that for Einstein spacetimes the trace of the Chevreton superenergy tensor HabH_{ab} can be rearranged in the form of a generalised wave operator â–ˇL\square_L acting on the energy momentum tensor TabT_{ab} of the test fields, i.e., Hab=â–ˇLTab/2H_{ab}=\square_LT_{ab}/2. In this letter we show, for Einstein-Maxwell spacetimes in the full non-linear theory, that, although, the trace of the Chevreton superenergy tensor HabH_{ab} can again be rearranged in the form of a generalised wave operator â–ˇG\square_G acting on the electromagnetic energy momentum tensor, in this case the result is also crucially dependent on Einstein's equations; hence we argue that the divergence-free property of the tensor Hab=â–ˇGTab/2H_{ab}=\square_GT_{ab}/2 has significant independent content beyond that of the divergence-free property of TabT_{ab}

    R-Modes in Superfluid Neutron Stars

    Get PDF
    The analogs of r-modes in superfluid neutron stars are studied here. These modes, which are governed primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small angular-velocity expansion used here. The equations that determine the next order terms are derived and solved numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid ``mutual friction'' (which vanishes at the lowest order in this expansion) is found to have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a ``typical'' superfluid neutron-star model. This time-scale is far too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have characteristic mutual friction damping times that are short enough (i.e. shorter than about 5 s) to suppress the gravitational radiation driven instability completely.Comment: 15 pages, 8 figure
    • …
    corecore