research

On the structure of the new electromagnetic conservation laws

Abstract

New electromagnetic conservation laws have recently been proposed: in the absence of electromagnetic currents, the trace of the Chevreton superenergy tensor, HabH_{ab} is divergence-free in four-dimensional (a) Einstein spacetimes for test fields, (b) Einstein-Maxwell spacetimes. Subsequently it has been pointed out, in analogy with flat spaces, that for Einstein spacetimes the trace of the Chevreton superenergy tensor HabH_{ab} can be rearranged in the form of a generalised wave operator L\square_L acting on the energy momentum tensor TabT_{ab} of the test fields, i.e., Hab=LTab/2H_{ab}=\square_LT_{ab}/2. In this letter we show, for Einstein-Maxwell spacetimes in the full non-linear theory, that, although, the trace of the Chevreton superenergy tensor HabH_{ab} can again be rearranged in the form of a generalised wave operator G\square_G acting on the electromagnetic energy momentum tensor, in this case the result is also crucially dependent on Einstein's equations; hence we argue that the divergence-free property of the tensor Hab=GTab/2H_{ab}=\square_GT_{ab}/2 has significant independent content beyond that of the divergence-free property of TabT_{ab}

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020