195 research outputs found
Implementing the Five-A Model of technical refinement: Key roles of the sport psychologist
There is increasing evidence for the significant contribution provided by sport psychologists within applied coaching environments. However, this rarely considers their skills/knowledge being applied when refining athletes’ already learned and well-established motor skills. Therefore, this paper focuses on how a sport psychologist might assist a coach and athlete to implement long-term permanent and pressure proof refinements. It highlights key contributions at each stage of the Five-A Model—designed to deliver these important outcomes—providing both psychomotor and psychosocial input to the support delivery. By employing these recommendations, sport psychologists can make multiple positive contributions to completion of this challenging task
From Linear to Nonlinear Response in Spin Glasses: Importance of Mean-Field-Theory Predictions
Deviations from spin-glass linear response in a single crystal Cu:Mn 1.5 at %
are studied for a wide range of changes in magnetic field, . Three
quantities, the difference , the effective waiting time,
, and the difference are examined in our
analysis. Three regimes of spin-glass behavior are observed as
increases. Lines in the plane, corresponding to ``weak'' and
``strong'' violations of linear response under a change in magnetic field, are
shown to have the same functional form as the de Almeida-Thouless critical
line. Our results demonstrate the existence of a fundamental link between
static and dynamic properties of spin glasses, predicted by the mean-field
theory of aging phenomena.Comment: 9 pages, 10 figure
The Influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys
Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.The Australian Research Council (ARC DP10955737)
Chaotic, memory and cooling rate effects in spin glasses: Is the Edwards-Anderson model a good spin glass?
We investigate chaotic, memory and cooling rate effects in the three
dimensional Edwards-Anderson model by doing thermoremanent (TRM) and AC
susceptibility numerical experiments and making a detailed comparison with
laboratory experiments on spin glasses. In contrast to the experiments, the
Edwards-Anderson model does not show any trace of re-initialization processes
in temperature change experiments (TRM or AC). A detailed comparison with AC
relaxation experiments in the presence of DC magnetic field or coupling
distribution perturbations reveals that the absence of chaotic effects in the
Edwards-Anderson model is a consequence of the presence of strong cooling rate
effects. We discuss possible solutions to this discrepancy, in particular the
smallness of the time scales reached in numerical experiments, but we also
question the validity of the Edwards-Anderson model to reproduce the
experimental results.Comment: 17 pages, 10 figures. The original version of the paper has been
split in two parts. The second part is now available as cond-mat/010224
Simulation of Channel Segregation During Directional Solidification of In—75 wt pct Ga. Qualitative Comparison with In Situ Observations
International audienceFreckles are common defects in industrial casting. They result from thermosolutal convection due to buoyancy forces generated from density variations in the liquid. The present paper proposes a numerical analysis for the formation of channel segregation using the three-dimensional (3D) cellular automaton (CA)—finite element (FE) model. The model integrates kinetics laws for the nucleation and growth of a microstructure with the solution of the conservation equations for the casting, while introducing an intermediate modeling scale for a direct representation of the envelope of the dendritic grains. Directional solidification of a cuboid cell is studied. Its geometry, the alloy chosen as well as the process parameters are inspired from experimental observations recently reported in the literature. Snapshots of the convective pattern, the solute distribution, and the morphology of the growth front are qualitatively compared. Similitudes are found when considering the coupled 3D CAFE simulations. Limitations of the model to reach direct simulation of the experiments are discussed
On the Degradation of Retained Austenite in Transformation Induced Plasticity Steel
© 2020, The Minerals, Metals & Materials Society and ASM International. A transformation-induced plasticity steel was thermomechanically processed and then transformed to bainite at an isothermal transformation temperature of 723 K for 1800 seconds, which exceeds the time required for completion of the bainite transformation. The formation of lenticular-shaped carbides with a triclinic lattice and internal substructure was found after thermomechanical processing. After 16 years of storage at room temperature, the decomposition of retained austenite into pearlite was observed for the first time at this temperature
Isothermal and Cyclic Aging of 310S Austenitic Stainless Steel
Unusual damage and high creep strain rates have been observed on components made of 310S stainless steel subjected to thermal cycles between room temperature and 1143 K (870 °C). Microstructural characterization of such components after service evidenced high contents in sigma phase which formed first from δ-ferrite and then from γ-austenite. To get some insight into this microstructural evolution, isothermal and cyclic aging of 310S stainless steel has been studied experimentally and discussed on the basis of numerical simulations. The higher contents of sigma phase observed after cyclic agings than after isothermal treatments are clearly associated with nucleation triggered by thermal cycling
- …