18,094 research outputs found
Multi Mode Interferometer for Guided Matter Waves
We describe the fundamental features of an interferometer for guided matter
waves based on Y-beam splitters and show that, in a quasi two-dimensional
regime, such a device exhibits high contrast fringes even in a multi mode
regime and fed from a thermal source.Comment: Final version (accepted to PRL
Gravitational wave asteroseismology with fast rotating neutron stars
We investigate damping and growth times of the f-mode for rapidly rotating
stars and a variety of different polytropic equations of state in the Cowling
approximation. We discuss the differences in the eigenfunctions of co- and
counterrotating modes and compute the damping times of the f-mode for several
EoS and all rotation rates up to the Kepler-limit. This is the first study of
the damping/growth time of this type of oscillations for fast rotating neutron
stars in a general relativistic framework. We use these frequencies and
damping/growth times to create robust empirical formulae which can be used for
gravitational wave asteroseismology. The estimation of the damping/growth time
is based on the quadrupole formula and our results agree very well with
Newtonian ones in the appropriate limit.Comment: 15 pages, 8 figures, version accepted for publication in PhysRev
Delocalization power of global unitary operations on quantum information
We investigate how originally localized two pieces of quantum information
represented by a tensor product of two unknown qudit states are delocalized by
performing two-qudit global unitary operations. To characterize the
delocalization power of global unitary operations on quantum information, we
analyze the necessary and sufficient condition to deterministically relocalize
one of the two pieces of quantum information to its original Hilbert space by
using only LOCC. We prove that this LOCC one-piece relocalization is possible
if and only if the global unitary operation is local unitary equivalent to a
controlled-unitary operation. The delocalization power and the entangling power
characterize different non-local properties of global unitary operations.Comment: 14 pages, 1 figur
Non-adiabatic holonomic quantum computation
We develop a non-adiabatic generalization of holonomic quantum computation in
which high-speed universal quantum gates can be realized by using non-Abelian
geometric phases. We show how a set of non-adiabatic holonomic one- and
two-qubit gates can be implemented by utilizing optical transitions in a
generic three-level configuration. Our scheme opens up for universal
holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde
Dynamics of correlations due to a phase noisy laser
We analyze the dynamics of various kinds of correlations present between two
initially entangled independent qubits, each one subject to a local phase noisy
laser. We give explicit expressions of the relevant quantifiers of correlations
for the general case of single-qubit unital evolution, which includes the case
of a phase noisy laser. Although the light field is treated as classical, we
find that this model can describe revivals of quantum correlations. Two
different dynamical regimes of decay of correlations occur, a Markovian one
(exponential decay) and a non-Markovian one (oscillatory decay with revivals)
depending on the values of system parameters. In particular, in the
non-Markovian regime, quantum correlations quantified by quantum discord show
an oscillatory decay faster than that of classical correlations. Moreover,
there are time regions where nonzero discord is present while entanglement is
zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta,
special issue for CEWQO 2011 proceeding
Thermally induced magnetic relaxation in square artificial spin ice
The properties of natural and artificial assemblies of interacting elements,
ranging from Quarks to Galaxies, are at the heart of Physics. The collective
response and dynamics of such assemblies are dictated by the intrinsic
dynamical properties of the building blocks, the nature of their interactions
and topological constraints. Here we report on the relaxation dynamics of the
magnetization of artificial assemblies of mesoscopic spins. In our model
nano-magnetic system - square artificial spin ice - we are able to control the
geometrical arrangement and interaction strength between the magnetically
interacting building blocks by means of nano-lithography. Using time resolved
magnetometry we show that the relaxation process can be described using the
Kohlrausch law and that the extracted temperature dependent relaxation times of
the assemblies follow the Vogel-Fulcher law. The results provide insight into
the relaxation dynamics of mesoscopic nano-magnetic model systems, with
adjustable energy and time scales, and demonstrates that these can serve as an
ideal playground for the studies of collective dynamics and relaxations.Comment: 15 pages, 5 figure
Asymptotic quasinormal modes of Reissner-Nordstr\"om and Kerr black holes
According to a recent proposal, the so-called Barbero-Immirzi parameter of
Loop Quantum Gravity can be fixed, using Bohr's correspondence principle, from
a knowledge of highly-damped black hole oscillation frequencies. Such
frequencies are rather difficult to compute, even for Schwarzschild black
holes. However, it is now quite likely that they may provide a fundamental link
between classical general relativity and quantum theories of gravity. Here we
carry out the first numerical computation of very highly damped quasinormal
modes (QNM's) for charged and rotating black holes. In the Reissner-Nordstr\"om
case QNM frequencies and damping times show an oscillatory behaviour as a
function of charge. The oscillations become faster as the mode order increases.
At fixed mode order, QNM's describe spirals in the complex plane as the charge
is increased, tending towards a well defined limit as the hole becomes
extremal. Kerr QNM's have a similar oscillatory behaviour when the angular
index . For the real part of Kerr QNM frequencies tends to
, being the angular velocity of the black hole horizon, while
the asymptotic spacing of the imaginary parts is given by .Comment: 13 pages, 7 figures. Added result on the asymptotic spacing of the
imaginary part, minor typos correcte
Linearized gravity and gauge conditions
In this paper we consider the field equations for linearized gravity and
other integer spin fields on the Kerr spacetime, and more generally on
spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of
decoupled field equations for the linearized Weyl scalars for all spin weights
and identify the gauge source functions occuring in these. For the spin weight
0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a
generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild
case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly
from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio
Transport Coefficients of Non-Newtonian Fluid and Causal Dissipative Hydrodynamics
A new formula to calculate the transport coefficients of the causal
dissipative hydrodynamics is derived by using the projection operator method
(Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This
is an extension of the Green-Kubo-Nakano (GKN) formula to the case of
non-Newtonian fluids, which is the essential factor to preserve the
relativistic causality in relativistic dissipative hydrodynamics. This formula
is the generalization of the GKN formula in the sense that it can reproduce the
GKN formula in a certain limit. In this work, we extend the previous work so as
to apply to more general situations.Comment: 15 pages, no figure. Discussions are added in the concluding remarks.
Accepted for publication in Phys. Rev.
Anti-Hyperon Enhancement through Baryon Junction Loops
The baryon junction exchange mechanism recently proposed to explain valence
baryon number transport in nuclear collisions is extended to study midrapidity
anti-hyperon production. Baryon junction-anti-junction (J anti-J) loops are
shown to enhance anti-Lambda, anti-Xi, anti-Omega yields as well as lead to
long range rapidity correlations. Results are compared to recent WA97 Pb + Pb
-> Y + anti-Y + X data.Comment: 10 pages, 4 figure
- …