1,325 research outputs found

    Herbicide additives

    Get PDF
    L.E. Anderson (Department of Agronomy, College of Agriculture)New 5/79/10

    Wild cane : characteristics and control

    Get PDF
    L.E. Anderson (Department of Agronomy, College of Agriculture)Rev. 2/78/8

    Soil sterilants for complete vegetative control

    Get PDF
    L.E. Anderson (Department of Agronomy, College of Agriculture)Rev. 2/78/8

    Foraging activity by the southern brown bandicoot (Isoodon obesulus) as a mechanism for soil turnover

    Get PDF
    Mammals that forage for food by biopedturbation can alter the biotic and abiotic characteristics of their habitat, influencing ecosystem structure and function. Bandicoots, bilbies, bettongs and potoroos are the primary digging marsupials in Australia, although most of these species have declined throughout their range. This study used a snapshot approach to estimate the soil turnover capacity of the southern brown bandicoot (Isoodon obesulus, Shaw 1797), a persisting digging Australian marsupial, at Yalgorup National Park, Western Australia. The number of southern brown bandicoots was estimated using mark-recapture techniques. To provide an index of digging activity per animal, we quantified the number of new foraging pits and bandicoot nose pokes across 18 plots within the same area. The amount of soil displaced and physical structure of foraging pits were examined from moulds of 47 fresh foraging pits. We estimated that an individual southern brown bandicoot could create ∼45 foraging pits per day, displacing ∼10.74kg of soil, which extrapolates to ∼3.9 tonnes of soil each year. The digging activities of the southern brown bandicoots are likely to be a critical component of soil ecosystem processe

    Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light

    Get PDF
    Although considerable research has been carried out on a range of environmental factors that impact on the survival of Campylobacter jejuni, there is limited information on the effects of violet/blue light on this pathogen. This investigation was carried out to determine the effects of high-intensity 405-nm light on C. jejuni and to compare this with the effects on two other important Gram-negative enteric pathogens, Salmonella enteritidis and Escherichia coli O157:H7. High-intensity 405-nm light generated from an array of 405-nm light-emitting diodes was used to inactivate the test bacteria. The results demonstrated that while all three tested species were susceptible to 405-nm light inactivation, C. jejuni was by far the most sensitive organism, requiring a total dose of 18J cm−2 of 405-nm light to achieve a 5-log10 reduction. This study has established that C. jejuni is particularly susceptible to violet/blue light at a wavelength of 405nm. This finding, coupled with the safety-in-use advantages of this visible (non-ultraviolet wavelength) light, suggests that high-intensity 405-nm light may have applications for control of C. jejuni contamination levels in situations where this type of illumination can be effectively applied

    Chemical weed control recommendations for legumes and pastures

    Get PDF
    L.E. Anderson and Howell N. Wheaton (Department of Agronomy, College of Agriculture)Rev. 10/78/8

    Wild cane-characteristics and control

    Get PDF
    L.E. Anderson and O. Hale Fletchall (Department of Agronomy, College of Agriculture)Revised 5/80/8

    Chemical weed control recommendations for legumes and pastures

    Get PDF
    L.E. Anderson and Howell N. Wheaton (Department of Agronomy, College of Agriculture)Revised 1/80/8

    Potential for ill-posedness in several 2nd-order formulations of the Einstein equations

    Full text link
    Second-order formulations of the 3+1 Einstein equations obtained by eliminating the extrinsic curvature in terms of the time derivative of the metric are examined with the aim of establishing whether they are well posed, in cases of somewhat wide interest, such as ADM, BSSN and generalized Einstein-Christoffel. The criterion for well-posedness of second-order systems employed is due to Kreiss and Ortiz. By this criterion, none of the three cases are strongly hyperbolic, but some of them are weakly hyperbolic, which means that they may yet be well posed but only under very restrictive conditions for the terms of order lower than second in the equations (which are not studied here). As a result, intuitive transferences of the property of well-posedness from first-order reductions of the Einstein equations to their originating second-order versions are unwarranted if not false.Comment: v1:6 pages; v2:7 pages, discussion extended, to appear in Phys. Rev. D; v3: typos corrected, published versio
    corecore