10,555 research outputs found

    Cyber-pseudepigraphy: A New Challenge for Higher Education Policy and Management

    Get PDF
    There is no lack of critical literature dealing with cyber-plagiarism and the implications for assessment in higher education. The practice of the selling of academic papers through the Internet is generally included under the category of plagiarism, although it is suggested that this ought to be considered under the separate category of cyber-pseudepigraphy. Pseudepigraphy is defined in this essay as the deliberate ascription of false authorship to a piece of writing, and cyber-pseudepigraphy is defined as using the Internet to have another person write an academic essay or paper, without this authorship being acknowledged. It is suggested that cyber-pseudepigraphy has widespread implications, and five critical issues are discussed. The essay finally raises the prospect of a return to some form of unseen examination as a method of student assessment as a way of dealing with this problem

    Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector

    Get PDF
    The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is an area that has, until recently, received only limited attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies. In this study, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector was theoretically analysed through the use of a modified Hottel–Whillier model and was validated with experimental data from testing on a prototype BIPVT collector. The results showed that key design parameters such as the fin efficiency, the thermal conductivity between the PV cells and their supporting structure, and the lamination method had a significant influence on both the electrical and thermal efficiency of the BIPVT. Furthermore, it was shown that the BIPVT could be made of lower cost materials, such as pre-coated colour steel, without significant decreases in efficiency. Finally, it was shown that by integrating the BIPVT into the building rather than onto the building could result in a lower cost system. This was illustrated by the finding that insulating the rear of the BIPVT may be unnecessary when it is integrated into a roof above an enclosed air filled attic, as this air space acts as a passive insulating barrier

    The 1988 Arctic Survey, Diurnal Study (Sunrise and Sunset) and Peak Altitude (22 km) Flights for the In Situ Detection of ClO and BrO from the NASA ER-2 Aircraft

    Get PDF
    Two critical areas of research were addressed successfully by this research. The first involves NASA ER-2 airborne observations of ClO and BrO radical destruction of ozone within the arctic vortex. The second involves the analysis of diurnal variations in ClO, to test the production and loss rates of ClO that constitutes the test for coupling reactions between the chlorine and nitrogen systems. We discuss results from this research in order

    Southern Hemisphere In Situ Observations of OH, HO2, CIO and BrO from the ER-2 Aircraft for the 1994 ASHOE Mission

    Get PDF
    A summary of the first order scientific conclusions that emerged from the research done under this grant are as follows: (1) For the first time, the concentration of the key hydrogen and halogen radicals OH, H02, ClO and BrO were determined on a global scale extending from the arctic circle to the antarctic circle, over the altitude domain of the ER-2. That domain extends from 15-20 km altitude, covering a critical part of the lower stratosphere; (2) Simultaneous, in situ measurements of the concentrations of OH, H02, ClO, BrO, NO and NO2 demonstrate the predominance of odd-hydrogen and halogen free radical catalysis in determining the rate of removal of ozone in the lower stratosphere over the complete ASHOE mission. This extends to the global scale the "first look" data obtained during the NASA Stratospheric Photochemistry and Dynamics Experiment (SPADE), executed out of Ames Research Center in June 1993. This represents a major rearrangement of our understanding with respect to the hierarchy of dominant catalytic cycles controlling ozone loss in the lower stratosphere. For the past twenty years, it has been assumed that nitrogen radicals dominate the destruction rate of ozone in the lower stratosphere; (3) Throughout the altitude and latitude range covered by ASHOE, it was determined that a single catalytic cycle, HO2 + O3 yields OH + 2O2, accounted for one half of the total O3 removal in this region of the atmosphere. Halogen radical catalytic cycles were found to account for one third of the ozone loss, and nitrogen radicals were found to account for 20% of the loss; (4) Simultaneous observations of the full complement of radicals, tracers, ozone, and water vapor during ASHOE demonstrated quantitatively the coupling that exists between the rate limiting radicals and other reactive species in the photochemical reaction network. Specifically, the concentrations of ClO and HO2 are inversely correlated with the concentration of NOx. This carries the implication that the NOx effluent from the proposed High Speed Civil Transport may be less destructive to stratospheric ozone than had previously been thought. ASHOE brought this conclusion forward for the first time on a global basis; and (5) The density of BrO was measured on a global scale during ASHOE in the lower stratosphere. It was found that bromine is responsible for 55-65% of the local rate of catalytic destruction of ozone by reactions involving bromine and chlorine. Normalizing calculated loss rates to total available inorganic bromine and chlorine explicitly demonstrates that bromine is 60-80 times more efficient than chlorine in removing ozone in the lower stratosphere. An inferred value of total inorganic bromine is in excellent agreement with measurements of their source species, organic bromine compounds in the troposphere

    Conserved Amino Acids in Each Subunit of the Heteroligomeric tRNA m\u3csup\u3e1\u3c/sup\u3eA58 Mtase from \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e Contribute to tRNA Binding

    Get PDF
    In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of . The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-l-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind , indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present

    Stratospheric Tracers of Atmospheric Transport (STRAT) Campaign: ER-2 Participation

    Get PDF
    The NASA Stratospheric Tracers of Atmospheric Transport (STRAT) mission was initiated to advance knowledge of the major transport mechanisms of the upper troposphere-lower stratosphere. This is the region of the atmosphere within which exchange processes take place that critically determine the response of the climate system and ozone distribution to changing conditions triggered by the release of chemicals at the surface. The mission series that extended from October 1995 to November 1997 was extremely successful. The scientific advances that emerged from that mission include analyses of- troposphere-to-stratosphere transport in the lowermost stratosphere from measurements of H2O, CO2, N2O, and O3; the effects of tropical cirrus clouds on the abundance of lower stratospheric ozone; the role of HO, in super- and subsonic aircraft exhaust plumes; and dehydration and denitrification in the arctic polar vortex during the 1995-96 winter

    Stratospheric Tracers of Atmospheric Transport (STRAT) Campaign: ER-2 Participation

    Get PDF
    The NASA Stratospheric Tracers of Atmospheric Transport (STRAT) mission was initiated to advance knowledge of the major transport mechanisms of the upper troposphere-lower stratosphere. This is the region of the atmosphere within which exchange processes take place that critically determine the response of the climate system and ozone distribution to changing conditions triggered by the release of chemicals at the surface. The mission series that extended from October 1995 to November 1997 was extremely successful. The scientific advances that emerged from that mission include analyses of: (1) troposphere-to-stratosphere transport in the lowermost stratosphere from measurements of H2O, CO2, N2O, and O3; (2) the effects of tropical cirrus clouds on the abundance of lower stratospheric ozone; (3) the role of HO(sub x) in super- and subsonic aircraft exhaust plumes; and (4) dehydration and denitrification in the arctic polar vortex during the 1995-96 winter. The abstracts from published papers are included
    • 

    corecore