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ABSTRACT

In Saccharomyces cerevisiae, a two-subunit methyl-
transferase (Mtase) encoded by the essential
genes TRM6 and TRM61 is responsible for the
formation of 1-methyladenosine, a modified nucleo-
side found at position 58 in tRNA that is critical
for the stability of tRNAMet

i . The crystal structure of
the homotetrameric m1A58 tRNA Mtase from
Mycobacterium tuberculosis, TrmI, has been
solved and was used as a template to build
a model of the yeast m1A58 tRNA Mtase hetero-
tetramer. We altered amino acids in TRM6 and
TRM61 that were predicted to be important for
the stability of the heteroligomer based on this
model. Yeast strains expressing trm6 and trm61
mutants exhibited growth phenotypes indicative
of reduced m1A formation. In addition, recombinant
mutant enzymes had reduced in vitro Mtase activity.
We demonstrate that the mutations introduced
do not prevent heteroligomer formation and do not
disrupt binding of the cofactor S-adenosyl-L-
methionine. Instead, amino acid substitutions in
either Trm6p or Trm61p destroy the ability of
the yeast m1A58 tRNA Mtase to bind tRNAMet

i ,
indicating that each subunit contributes to tRNA
binding and suggesting a structural alteration of
the substrate-binding pocket occurs when these
mutations are present.

INTRODUCTION

Modified nucleosides are abundant and diverse in transfer
RNA (tRNA), and influence translation accuracy
(1), reading frame maintenance (2), recognition by
aminoacyl-tRNA synthetases (3), and tRNA structure
(4). The modifications found in tRNAs occur post-
transcriptionally and range from simple base or ribose
methylations to more complex multi-step additions (5).
Various types of modifications are found throughout a
tRNA molecule, but the greatest assortment is found in
the anticodon region (6). In most tRNAs from
Saccharomyces cerevisiae, the modified nucleoside
1-methyladenosine (m1A) is found at position 58 in the
T-loop. This modification results from the transfer of a
methyl group from the cofactor S-adenosyl-L-methionine
(AdoMet) to the N1 position of adenosine. While many
tRNA modifications are not required for growth, m1A58
has been found to be essential in yeast (7). Previous work
has shown that m1A58 is necessary to maintain the
stability of one tRNA, initiator methionine tRNA
tRNAMet

i

� �
(7).

The occurrence of m1A58 in tRNA is widespread,
as it is found in bacterial, archaeal and eukaryotic tRNAs.
The tRNA m1A58 methyltransferase (Mtase) has been
characterized in organisms representing each of these
domains, and the crystal structure of the Mycobacterium
tuberculosis tRNA m1A58 Mtase, TrmI, with AdoMet
bound has been solved (8–12). These studies have
shown that the bacterial and archaeal tRNA m1A58
Mtases are composed of one subunit and are found as
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homotetramers; however, the known eukaryotic tRNA
m1A58 Mtases consist of two subunits and are believed
to function as heterotetramers. In yeast, the two subunits
of the tRNA m1A58 Mtase are encoded by TRM6 and
TRM61. Trm61p contains AdoMet-binding motifs and
shows obvious and extensive sequence similarity to the
bacterial and archaeal tRNA m1A58 Mtases. TRM6 has
close homologs only in eukaryotic organisms, and does
not share evident sequence similarity with any proteins
other than orthologs (13). However, based on fold-
recognition analyses, it has been postulated that Trm6p
and Trm61p have a common core structure, and it has
been hypothesized that a duplication of a trmI-like
ancestral gene, followed by divergent evolution, resulted
in the creation of TRM6 and TRM61 (13).

There have been only a limited number of studies
regarding structure–function relationships in tRNA mod-
ification enzymes. Structure–function analyses have been
performed for the Mtases responsible for formation of
1-methylguanosine 37 (TrmD) (14), 20-O-methylguanosine
18 (TrmH) (15), and 7-methylguanosine 46 (TrmB) (16),
and further insight into the mechanics of these enzymes
has been gained from their crystal structures (17–19).
However, these enzymes do not have heteroligomeric
structures and, as a result, these studies do not give us
insight into how Trm6p and Trm61p may interact with
each other and a tRNA substrate. Additionally, studies of
TrmD and TrmH are not entirely applicable to studies of
the m1A58 Mtase, as these proteins are members of the
SPOUT family of Mtases (17,18), while the Trm6p/
Trm61p complex is predicted to belong to the larger and
structurally distinct Rossmann-fold Mtase family. Lastly,
no structure–function studies have been performed
for TrmI.

The tRNA m1A58 Mtase from S. cerevisiae is
intriguing—tRNA modification enzymes are rarely essen-
tial, but TRM6 and TRM61 are both essential (20); tRNA
Mtases are usually single subunit enzymes, but the yeast
tRNA m1A58 Mtase is composed of two subunits (21),
and Rossmann-fold Mtases are mostly monomeric, but
Trm6p/Trm61p complexes are oligomeric (22). Because of
these peculiarities and our lack of knowledge about this
enzyme, we decided to perform a structure–function
analysis of the yeast tRNA m1A58 Mtase. In order to
guide our characterization of this enzyme, we created a
model of a Trm6p/Trm61p heterotetramer using bioinfor-
matics. Trm6p and Trm61p subunits were modeled
individually based on alignments to known TrmI struc-
tures obtained by protein fold-recognition analyses. The
two subunits were then superimposed onto the structure of
theM. tuberculosis TrmI homotetramer. Using this model,
we introduced mutations into TRM6 and TRM61,
targeting conserved amino acids predicted to be important
for protein–protein interactions between the subunits of
the enzyme. We expected that the resulting mutant
enzymes would be defective in Mtase activity due to an
inability to form heteroligomers. Surprisingly, the muta-
tions made in Trm6p and Trm61p had no effect on
oligomerization and, furthermore, did not inhibit AdoMet
binding. Instead, we found that tRNA binding was
affected. Loss of tRNA binding resulted from the

corresponding homologous mutations in either Trm6p
or Trm61p, indicating that both subunits make contribu-
tions to protein–substrate interactions. This is the first
study to identify the amino acids in a heteroligomeric
tRNA Mtase that are required for substrate binding.

MATERIALS AND METHODS

Yeast strains and media

Strain Y350 was created by exchanging the high-copy
LEU2 marked plasmid bearing IMT4 in strain Y146 (7)
for a high-copy URA3 marked plasmid bearing IMT4(C-
50) (23). Transformation of yeast strains was done as
described (24). Y350 was transformed with YCplac111
(Y351) (25) or the following plasmids described below:
p317 (Y353), p326 (Y354), p325 (Y360) or p334 (Y367).
Selection for 5-FOA resistance was performed on
Sc-leucine plates containing 0.1% 5-FOA. The 5-FOA
resistant strains of trm6-504 (Y361) and trm6-420 (Y368)
were isolated by streaking the initial 5-FOA resistant
papillae to another plate containing 5-FOA and waiting
for colonies to form. Y261 (trm61-2) is strain Hm296 (26).
Y261 was transformed with pRS316 (Y428) (27) or the
following plasmids described below: pJA148 (Y429),
pJA149 (Y430) or p430 (Y431). Gap repair was used to
identify the mutation present in the trm6-504 strain.
A plasmid containing TRM6 (pJA117) was digested with
BsrGI and HindIII to create a gap �500 nt long at the 30

end of the open reading frame. This plasmid was used to
transform strain H2457 (7). Repaired plasmids were
isolated and two independent isolates were sequenced.
A point mutation was found resulting in a P431R
substitution. The BsrGI/HindIII fragment from one of
the repaired plasmids was moved into the same sites of
pJA117 and used to transform H2457. Transformants
failed to complement the temperature sensitive and
3-aminotriazole resistant phenotypes of trm6-504, insuring
no other mutations were present in trm6-504.

Plasmid construction

For expression in yeast, single copy TRM6 with a
histidine/Flag tag was moved from pLPYGCD10His
Flag (10) as a SphI/XbaI fragment into the single
copy LEU2 marked plasmid YCplac111 (25) digested
with the same enzymes to give p317. Quik Change site-
directed mutagenesis (Stratagene) was used to introduce
the trm6-416 (p326), trm6-504 (p325) and trm6-420
(p334) mutations into p317. The entireTRM6 open reading
frame in p326 and p334 was sequenced to confirm
the presence of the desired mutations and absence of any
other mutations. Plasmids carrying TRM61 (pJA148)
and trm61-3 (pJA149) have been described (10). To create
a plasmid carrying trm61-255, mutagenesis was performed
on TRM61 in plasmid pAK001 (described below) to
give p420. An AgeI/HpaI fragment of TRM61 containing
the trm61-255 mutation was moved from p420 to AgeI/
HpaI digested pJA148 to give p430. The presence of
the trm61-255 mutation was confirmed by DNA
sequencing.
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For co-expression of TRM6 and TRM61 in Escherichia
coli, both reading frames were initially cloned separately.
First, pAK001 was created by inserting a NdeI/BamHI
fragment containing TRM61 with a C-terminal Flag
tag into pET11a (Novagen). The NdeI/BamHI fragment
came from pJA166, created by PCR amplification of
TRM61 from pJA148 and cloning of the product into
pET3a (Novagen). pAK002 was constructed by cloning
a NdeI/BamHI fragment containing TRM6 from
pJA165 into pET15b (Novagen) cut with the same
enzymes, giving TRM6 an N-terminal 6�His tag.
pJA165 consists of TRM6, which was amplified from
pMG107 (28) using the PCR and inserted into pET14b
(Novagen). The final plasmid for co-expression
(p328) was created by inserting a BglII(blunted)/AatII
fragment containing TRM6-His from pAK002 into
pAK001 that had been digested with HindIII(blunted)/
AatII. Using Quik Change site-directed mutagenesis
(Stratagene), the trm6-416 (p330), trm6-504 (p331) and
trm6-420 (p338) mutations were created in p328.
The TRM6 and TRM61 open reading frames were
sequenced to show the presence of the desired mutations
and verify that no other mutations had been introduced.
The trm61-3 mutant was created by transferring an AgeI/
NheI fragment from pJA149 into p328, producing p358.
The trm61-255 mutant was created by transferring
an AgeI/NheI fragment from p420 to AgeI/NheI digested
p328 to give p426, and confirmed by DNA sequencing.
To create trm6-416/trm61-255, this same AgeI/NheI
fragment was transferred to p330, giving p427, and verified
using DNA sequencing. BL21(DE3) cells were trans-
formed with these plasmids to give the following strains
used for expression and purification of recombinant
Trm6p/Trm61p complexes: TRM6/TRM61 (B329), trm6-
416 (B332), trm6-504 (B333), trm6-420 (B343), trm61-3
(B360), trm61-255 (B428), trm6-416/trm61-255 (B429).

Structure prediction and protein modeling

(For a detailed description of this process, please see
Supplementary Data S1) Fold recognition analyses run
via the GeneSilico MetaServer (29) were used to identify
the best structural templates. Models of Trm6p and
Trm61p subunits, excluding regions of predicted disorder,
were built using the ‘FRankenstein’s monster’ approach
(30). The model of the Trm6p/Trm61p heterotetramer was
constructed by superimposing two copies of Trm6p and
Trm61p onto the TrmI homotetramer.

Enzyme purification

Trm6p/Trm61p complexes were purified from E. coli using
TALON metal affinity resin (Clontech). Cells were grown
to OD¼ 0.2 at 378C and induced with 0.5mM IPTG
at 308C for 3 h, then harvested and the pellets frozen at
�208C. Pellets were thawed on ice and resuspended in
equilibration buffer (50mM sodium phosphate, pH 7,
1M NaCl) with complete protease inhibitor cocktail,
EDTA-free (Roche). After sonication and centrifugation
(12 000g, 20min, 48C), clarified cell extract was incubated
at 48C for 2 h with TALON resin in equilibration buffer.
Enzyme purification was carried out at 48C following

the manufacturer’s instructions for batch/gravity-flow
column purification, using 20mM imidazole in wash
buffer and 200mM imidazole in elution buffer.

In vitro activity assays

Mtase activity assays of purified enzymes were conducted
as described (10,11) using Mtase buffer (100mM Tris,
pH 7.6/0.1mM EDTA/10mM MgCl2/100mM NH4Cl/
1mM DTT). A standard assay contained 15 nM enzyme,
150 nM in vitro transcribed tRNAMet

i (11), and 30 mM
S-adenosyl-L-[methyl-3H]methionine (GE Healthcare).
The amount of radioactivity incorporated into tRNAMet

i
was determined by first collecting the acid-insoluble
material from the reaction on a GN-6 metricel membrane
disc filter (Pall) using a vacuum manifold, and then
quantitating the radioactivity on the filter using liquid
scintillation counting.

Gel filtration chromatography

To analyze Trm6/Trm61p complexes from yeast, cells
were washed with 1�Tris buffered saline (TBS) (31),
resuspended in breaking buffer [1�TBS, 1mM DTT,
1� complete protease inhibitor cocktail (Roche)], and
lysed using a French press. Cell extract was subjected to
centrifugation (107 000g, 1 h, 48C) and the clarified extract
injected onto a Superose 12 HR 10/30 column (GE
Healthcare) equilibrated with 1�TBS. The fractions
collected from the column were precipitated with acetone,
subjected to SDS-PAGE, and transferred to nitrocellulose
for western blotting. Protein standards (Sigma) were
analyzed similarly, but were not precipitated and were
detected by Coomassie blue staining. Antibodies to either
Trm6p or Trm61p were used to visualize the elution
patterns of the proteins by immunoblot analysis.

Recombinant enzyme from E. coli, purified as described
above, was also analyzed using gel filtration. Purified
enzyme (200mg) in elution buffer (50mM sodium phos-
phate, pH 7, 1M NaCl, 200mM imidazole) was injected
onto a Superose 12 HR 10/30 column (GE Healthcare)
equilibrated with 50mM sodium phosphate, pH 7, 1M
NaCl. Proteins recovered in the fractions collected from
the column were separated by SDS-PAGE and visualized
using Coomassie blue staining. Protein standards (Sigma)
were analyzed in the same way.

STD-NMR spectroscopy

Purified recombinant enzymes were exchanged into
an NMR buffer comprised of 20mM sodium phosphate,
pH 7.0 (uncorrected for isotope effect) and 200mM NaCl
in D2O, using PD-10 gel filtration columns (GE
Healthcare). Saturation transfer difference (STD) spectra
of enzymes at 7 mM were obtained on a 600MHz Varian
NMR System at 88C using the cyclenoe program (Varian
pulse sequence), with low power (�6 dB) irradiation
performed for 4 s using a train of 100ms rectangular
pulses. Two interleaved spectra were obtained, one with
irradiation of upfield shifted protein methyl resonances
(at 0 p.p.m.) and a second control spectrum with off-
resonance irradiation at �10 p.p.m., and these spectra
were subtracted to give the STD spectrum. AdoMet
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signals that were monitored included resonances at
6 p.p.m. (ribose) and 8.2 p.p.m. (adenine ring), which
were well-resolved from residual protein signals. Control
STD experiments were done in the absence of protein or in
the absence of AdoMet, and they gave no false positive
STD signals. Enzymes (wt or mutant) were titrated with 0,
100, 200, 300, 400, 600 or 800 mM AdoMet by repeated
addition of AdoMet immediately before performing the
STD experiment (acquisition time¼ 1 h, 512 acquisitions).
All spectra were printed with the same vertical scale and
the height of the resonance for an adenine ring proton of
AdoMet was measured for the STD signal. Data were
fitted to Equation (1) using SigmaPlot (Systat):

STD ¼ STDmax � ðSTDmaxÞ=ð1þ ½AdoMet�=KdÞ 1

where STD is the intensity change for AdoMet protons, at
a given AdoMet concentration ([AdoMet]), STDmax is the
corresponding signal when enzyme is fully bound with
AdoMet and Kd is the dissociation constant for AdoMet
binding to enzyme. STD signals were effectively adjusted
with the amplification factor (32). Errors for the fitted Kd

values represent SDs from the nonlinear least squares
fitting process.

tRNA-binding assays

tRNA binding was studied by incubating 500 nM enzyme
with �1 nM 32P end-labeled tRNAMet

i in Mtase buffer
in a total volume of 20 ml. The tRNAMet

i used was
previously purified from a trm6D strain (Y146) (10).
Reactions were incubated for 20min at room temperature
and then put on ice for 5min. tRNAMet

i bound to Trm6p/
Trm61p was collected on a GN-6 metricel membrane disc
filter (Pall) using a vacuum manifold. Filters were washed
with Mtase buffer, dried and counted by liquid scintilla-
tion. To determine the Kd of the wild-type enzyme, 1 nM
32P end-labeled tRNAMet

i was incubated with 50 nM,
100 nM, 250 nM, 500 nM, 1 mM, 5 mM or 10 mM enzyme
and the assay carried out as described above. The Kd value
was obtained by performing a nonlinear least squares fit of
the data using SigmaPlot (Systat).

RESULTS

Trm6/Trm61p heterotetramer modeling

To provide a structural platform for sequence–function
analyses, we decided to construct a model of the Trm6p/
Trm61p enzyme using bioinformatics. First, the Protein
Data Bank was searched with the Trm6p and Trm61p
sequences to find close homologs that could serve
as modeling templates. We ran a set of fold-recognition
(FR) methods via the GeneSilico MetaServer (29) to
obtain target-template alignments. The best structural
templates reported by the FR methods for both Trm6p
and Trm61p were the prokaryotic TrmI family members
from M. tuberculosis (1i9g) and Thermotoga maritima
(1o54). An alignment of these templates with Trm6p and
Trm61p reveals long insertions and terminal extensions in
Trm6p and Trm61p (60–185, 308–339 and 450–478
in Trm6p and 1–11, 266–342 and 370–384 in Trm61p)

that are not present in prokaryotic homologs (Figure 1A)
and algorithms for disorder prediction suggested these
regions are flexible and lack a defined 3D structure. The
alignment also illustrates that many of the residues
predicted to be important for tetramer formation in
TrmI, such as E229, R233, W235 and P244, are conserved
in the two eukaryotic proteins (highlighted in Figure 1A).
Importantly, these residues are located in the same
positions in our Trm6p/Trm61p tetramer model as in
the TrmI structure.
Based on the crystal structure of TrmI, salt bridges

between residues E229 and R233 from each subunit are
predicted to provide crucial strength for the tetramer (12).
As these residues are highly conserved in the entire m1A
Mtase family, including both TRM6 and TRM61 in yeast
(E416 and R420 in Trm6p; E255 and R259 in Trm61p,
Figure 1A), we hypothesized that these amino acids may
play an important role in formation or stabilization of
quaternary structure (Figure 1B and Figure S1). The
crystal structure of TrmI also shows that W235, P244 and
H251 form a three-layer sandwich, comprised of W235
and P244 from one subunit and H251 from another, that
may contribute to the stability of the homotetramer. In
both human and yeast Trm6p and Trm61p, as well as
many other organisms, the aromatic nature of W235 is
conserved by the presence of tyrosine (Y422 in Trm6p and
Y261 in Trm61p); therefore, we predicted this amino acid
may also be important for the stability of the eukaryotic
heteroligomer (Figure 1B and Figure S1). While P244 is
not conserved in Trm61p (substituted by methionine), it is
conserved in Trm6p (P431); conversely, H251 is conserved
in Trm61p (H354), but not in Trm6p (substituted by
glycine). The preservation of this H–P pair suggested that
it may contribute to the stability of the interface between
subunits (Figure 1B and Figure S1).
In order to study the role of these conserved amino

acids in yeast Trm6p/Trm61p protein–protein interac-
tions, we introduced alanine substitutions to remove side
chains. The Trm6p mutants created are trm6-416, which
has alanine substitutions at positions E416, R420 and
Y422, and trm6-420, which has an alanine substitution at
position R420 (Table 1). A spontaneous Trm6p mutant
that was previously isolated, trm6-504 (33), was also
included in these studies because we found that this
mutant has an arginine substitution at P431. A Trm61p
mutant was also created with mutations corresponding to
those of trm6-416. This mutant, trm61-255, has alanine
substitutions at E255, R259 and Y261 (Figure 1A).
Finally, the mutations in trm6-416 and trm61-255 were
combined to create trm6-416/trm61-255 (Table 1).

Mutations inTRM6 andTRM61 result in growth defects

Although TRM6 is an essential gene, a trm6 deletion
(trm6D) strain is viable when a high-copy plasmid
containing IMT4, which encodes tRNAMet

i , is present
(7). To demonstrate whether or not mutations in Trm6p
affect m1A58 Mtase activity, a trm6D strain that over-
expresses tRNAMet

i from a plasmid marked with URA3
(Y350) was transformed with a single copy LEU2
marked plasmid containing either TRM6 (Y353),
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trm6-416 (Y354), trm6-504 (Y360) or trm6-420 (Y367).
Expression of Trm6p was found to be similar between
the wild-type and mutant strains (data not shown).
These strains were then evaluated on plates containing
5-fluoroorotic acid (5-FOA), which selects against URA3.
Patches of cells grown on synthetic complete media
lacking uracil and leucine (Sc-ura-leu) were replica
printed to Sc-leu plates containing 5-FOA. Under these
conditions, expression of TRM6 permitted growth
throughout the patch, indicating the URA3 marked
plasmid encoding tRNAMet

i had been readily evicted
from these cells (Figure 2A). The strains expressing

TrmI  (4)----TGPFSIGERVQLTDAKGRRYTMSLTPGAEFHTHR-GSIAHDAVIGLEQGSVVKSS----------NGALFLVLRPL(68)
1o54 (13)VGKVADTLKPGDRVLLSFEDESEFLVDLEKDKKLHTHL-GIIDLNEVFEKGPGEIIRTS----------AGKKGYILIPS(81)
Trm61 (11)-----DLIKEGDLTLIWVSRDNIKPVRMHSEEVFNTRY-GSFPHKDIIGKPYGSQIAIRTK-----GSNKFAFVHVLQPT(79) 
Trm6   (1)-MNALTTIDFNQHVIVRLPSKNYKIVELKPNTSVSLGKFGAFEVNDIIGYPFGLTFEIYYD(123)KQKFAKYFTVEYLS(197) 

TrmI (69)LVDYVMSMPR-----GPQVIYPKDAAQIVHEGDIFPGARVLEAGAGSGALTLSLLRAVGP-------AGQVISYEQR---(133)
1o54 (82)LIDEIMNMKR------TQIVYPKDSSFIAMMLDVKEGDRIIDTGVGSGAMCAVLARAVGS-------SGKVFAYEKR---(146)
Trm61 (80)PELWTLSLPH-----RTQIVYTPDSSYIMQRLNCSPHSRVIEAGTGSGSFSHAFARSV----------GHLFSFEFH---(141)
Trm6 (198)SSNLLQFLIDKGDIQRVLDMSQESMGMLLNLANIQSEGNYLCMDETGGLLVYFLLERMFGGDNESKSKGKVIVIHENEHA(277)

TrmI (134)ADHAEHARRNVSGCYGQPPDNWRLVVSDLADSELP----DGSVDRAVLDMLA-PWEVLDAVSRLLVAG--GVLMVYVAT(205)
1o54 (147)EEFAKLAESNLTKWG--LIERVTIKVRDISEGFD-----EKDVDALFLDVPD-PWNYIDKCWEALKGG--GRFATVCPT(215)
Trm61 (142)HIRYEQALEEFKEHGL-IDDNVTITHRDVCQGGFL(18)SLNANVVFLDLPA-PWDAIPHLDSVISVDEKVGLCCFSPC(232)
Trm6 (278)NLDLLKFANYSEKFIKEHVHTISLLDFFEPPTLQE(42)EFLYDGLVMATTLHLPTLVPKLAEKIHGS--RPIVCYGQF(392)

                                  *   * *            *
TrmI (206)VTQLSRIVEALRAKQCWTEPRAWETLQRGWNVVG----LAVRPQHSMRGHTAFLVATRRLAPGAVA----(267)
1o54 (216)TNQVQETLKKLQEL-PFIRIEVWESLFRPYKPVP----ERLRPVDRMVAHTAYMIFATKVCRREE-----(384)
Trm61 (233)IEQVDKTLDVLEKY-GWTDVEMVEIQGRQYESRR(77)EVTKMEAEIKSHTSYLTFAFKVVNRSRD(14)(384)
Trm6 (393)KETLLELAHTLYSDLRFLAPSILETRCRPYQSIR----GKLHPLMTMKGGGGYLMWCHRVIPAPEP(24)(479)

A

B

Figure 1. Modeling templates and predicted structure of the Trm6p/Trm61p tetramer. (A) Modeling templates aligned with Trm6p and Trm61p
sequences. The shaded background designates chemically similar residues while the black background designates identical residues among at least
three sequences. Residues mutated in this study (E416, R420, Y422 and P431 in Trm6p and E255, R259 and Y261 in Trm61p) are indicated by
asterisks. TrmI is the m1A58 Mtase from M. tuberculosis. 1o54 is a predicted AdoMet-dependent Mtase from T. maritima. (B) The predicted Trm6p/
Trm61p tetramer is shown with Trm6 subunits in teal and Trm61p subunits in blue. AdoMet (tan, spacefill) is shown bound to both Trm61p
subunits. The amino acids that were mutated in this study (E416, R420, Y422 and P431 in Trm6p and E255, R259 and Y261 in Trm61p) are shown
with side chains in fuchsia. Flexible loops lacking defined structure are not shown. Figure generated with PyMOL (41).

Table 1. trm6/61 mutants constructed

Mutant Amino acid substitutions

trm6-416 E416A, R420A, Y422A
trm6-420 R420A
trm6-504 P431R
trm61-3 G118A, G120A
trm61-255 E255A, R259A, Y261A
trm6-416/trm61-255 E416A, R420A, Y422A, E255A,

R259A, Y261A

6812 Nucleic Acids Research, 2007, Vol. 35, No. 20



trm6-504 and trm6-420 were able to form papillae, but not
a confluent patch, indicating only occasional eviction of
the URA3 plasmid. The trm6-416 strain and the trm6D
strain carrying an empty vector (Y351) were unable to
grow (Figure 2A). The growth of cells containing TRM6 is
expected because a functional m1A58 Mtase would be
present and over-expression of tRNAMet

i would no longer
be required. The limited growth of the trm6-504 and trm6-
420 mutants suggests the m1A58 Mtase has reduced
activity, while the complete lack of growth of the trm6-416
strain suggests the enzyme is no longer functional. The
phenotypes observed using 5-FOA selection were the first
indication that the mutations created in Trm6p had a
detrimental effect on m1A58 Mtase activity.

It has been previously noted that a trm6-504 mutant
strain is temperature-sensitive (Ts�) at 378C due to
decreased levels of mature tRNAMet

i , thought to result
from a decrease in the stability of tRNAMet

i tertiary
structure from the absence of m1A58 (7,33). Because the
Ts� phenotype can serve as a measure of mature tRNAMet

i
levels in trm6 mutant strains, the 5-FOA resistant cells
containing trm6-504 (Y361) or trm6-420 (Y368) were
tested for temperature sensitivity. The trm6-420 strain
exhibited slow growth at 30 and 378C, while the trm6-504
displayed slow growth at 308C and a Ts� phenotype at
378C (Figure 2B). This result suggests that the trm6-504
and trm6-420 strains have reduced amounts of mature
tRNAMet

i , presumably due to decreased m1A58 Mtase
activity.

Because the three amino acids mutated in trm6-416 are
also found in a topologically similar position in Trm61p,
we created a Trm61p mutant with the corresponding
mutations to see if these amino acids were also important
for activity. This mutant, trm61-255, was tested for its
ability to complement a trm61-2 strain (Y261), which has

a temperature-sensitive phenotype (26,34). The trm61-2
strain was transformed with an empty plasmid (Y428) or
the same plasmid carrying either TRM61 (Y429), trm61-
255 (Y431) or trm61-3 (Y430). The trm61-3 mutant has
two conserved glycine residues in its predicted AdoMet-
binding motif changed to alanines, causing a null mutant
by inactivating the enzyme (10). Only expression of
TRM61 was able to complement the growth defect
of the trm61-2 strain (data not shown), suggesting that
Trm61-255p does not form an active m1A58 Mtase
in the presence of Trm6p. We conclude from these studies
that the conserved sequence of E, R and Y residues
in both the Trm6p and Trm61p subunits is crucial for
Mtase activity.

Mutations in Trm6p result in reduced m1AMtase activity
in vivo and in vitro

The growth phenotypes described above suggest that
Trm6-416p, Trm6-420p and Trm6-504p cannot form fully
functional m1A58 Mtases in the presence of Trm61p.
To confirm that tRNA from these strains was lacking
m1A, we used high performance liquid chromatography
(HPLC) to determine the modified nucleoside content
of total tRNA from a trm6D strain over-expressing
tRNAMet

i and containing single copy TRM6 (Y353),
trm6-416 (Y354), trm6-504 (Y360), trm6-420 (Y367) or
empty vector (Y351) (Figure 3). In order to control for the
amount of sample loaded onto the HPLC column,
modified nucleoside levels in each sample were normalized
to the amount of pseudouridine (�) detected in that
sample. � was used for this purpose as it is a modified
nucleoside and its formation does not depend on the
presence of m1A58 in tRNA (35). The amount of m1A
or � detected was determined using the area of the peak
from the HPLC chromatogram. In contrast to the
equivalent levels of the modified nucleoside N2,
N2-dimethylguanosine detected in all samples (data not
shown), the trm6mutants contained reduced levels of m1A
(Figure 3). The m1A levels in the trm6 mutants are
reported as a percentage of the amount found in
the TRM6 strain, which was set to 100%. The level
of m1A was lowest in the trm6-416 strain, which had only
5% of the amount found in the TRM6 strain, while the
trm6-420 and trm6-504 strains contained greater amounts
of m1A, 35 and 19%, respectively (Figure 3). The HPLC
data supports our interpretation of the growth studies,
illustrating that the trm6 mutants have reduced m1A
Mtase activity in vivo. In addition, the magnitude of the
growth defects seen for the mutant strains are mirrored by
the m1A levels, as the lowest levels of m1A are found in the
strains with the most severe growth defects.
In order to produce large quantities of mutant enzymes

and be able to combine mutations in both Trm6p and
Trm61p, we reconstructed each trm6 mutant in a vector
that allows co-expression of TRM6 and TRM61
in bacteria. TRM61 was expressed in E. coli together
with either TRM6 (B329), trm6-416 (B332), trm6-420
(B343) or trm6-504 (B333). Using a polyhistidine tag on
Trm6p, protein was purified from soluble E. coli extract
using affinity chromatography. Trm61p co-purified with

Figure 2. trm6 mutants exhibit growth defects. (A) A trm6D strain
over-expressing tRNAMet

i and containing empty vector (Y351) or single
copy TRM6 (Y353), trm6-416 (Y354), trm6-504 (Y360) or trm6-420
(Y367) was patched to a Sc-leu plate, grown, replica printed to a Sc-leu
plate containing 5-FOA and incubated at 308C for 3 days. (B) trm6-420
and trm6-504 strains that evicted the high-copy IMT4 plasmid (Y368
and Y361, respectively) were grown on YPD (Yeast extract/Peptone/
Dextrose) at either 30 or 378C for 3 days.
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both wild-type Trm6p and Trm6-416p, Trm6-420p
and Trm6-504p in apparent stoichiometric amounts
(Figure 4A). Purified recombinant enzymes were incu-
bated with S-adenosyl-L-[methyl-3H]methionine
(3H-AdoMet) and in vitro transcribed tRNAMet

i . The
incorporation of 3H into tRNAMet

i was monitored by
liquid scintillation counting. Under optimal conditions,
the wild-type enzyme has been found to convert a
maximum of 50% of tRNA substrate to product. In the
assays reported in this study, for which the results are
shown as the counts per minute of 3H detected, the wild-
type enzyme converted �40% of substrate to product, but
the mutant enzymes lacked Mtase activity (Figure 4B).
Since the trm61-3 and trm61-255 mutants were not able to
complement a trm61-2 strain, we also reconstructed these
mutants and co-expressed them in bacteria with TRM6
(B360 and B428, respectively). In addition, we created a
mutant, called trm6-416/trm61-255 (B429), which has the
three mutations in trm6-416 combined with the three
mutations in trm61-255. All of these enzymes also lacked
in vitro Mtase activity (Figure 4B).
While we did not observe in vitro Mtase activity for the

trm6-420 and trm6-504 mutants, the HPLC analysis of
tRNA from yeast expressing these Trm6p mutants had
shown some m1A was still formed in vivo, although far

less efficiently than wild-type enzyme (Figure 4B).
Therefore, we suspected that the low level of activity of
these mutants was undetectable in our in vitro assay or
indistinguishable from a negative control. Therefore, we
increased the concentration of enzyme and tRNA in the
assay 10-fold to try and amplify the signal-to-noise ratio
and make low-level activity detectable. Under these
conditions, the trm6-504 and trm6-420 mutant enzymes
consistently showed Mtase activity (Figure 4B). Trm6p-
420/Trm61p complexes consistently displayed more
potent Mtase activity than the other Trm6p mutants, in
accord with the less severe growth defect and higher level
of m1A seen in yeast expressing this mutant.

Mutations in Trm6p and Trm61p do not prevent
heteroligomer formation

Based on its crystal structure, the m1A58 Mtase from
M. tuberculosis was described as a dimer of two dimers
(12). The interactions between the two subunits that form
one dimer are extensive, while the interactions between all
four subunits are limited to a central barrel structure (12).
As described above, we created alanine substitutions in
Trm6p and Trm61p in order to destabilize protein–protein
interactions and found that the mutant enzymes
had reduced Mtase activity, although all of the mutant

Figure 3. trm6 mutant strains have reduced levels of m1A in tRNA. Total tRNA purified from a trm6D strain over-expressing tRNAMet
i and

containing empty vector (Y351) or single copy TRM6 (Y353), trm6-416 (Y354), trm6-504 (Y360) or trm6-420 (Y367) was digested to single
nucleotides and analyzed by HPLC as described previously (7). The absorbance at 254 nm (AU254) was measured and the portion of the
chromatogram where m1A elutes is shown plotted against the retention time in minutes. The peak corresponding to m1A is bold and the percent of
m1A, as compared to the TRM6 strain, which was set to 100%, is listed. For each sample, the amount of m1A detected was normalized to the
amount of pseudouridine detected. Peaks corresponding to 20-O-methylcytidine (Cm) and 7-methylguanosine (m7G) are labeled for reference.
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enzymes were still capable of forming heterodimers
(Figure 4A). We wanted to determine whether this
loss of activity was due to disruption of the predicted
heterotetrameric structure of the enzyme. To size mutant
Trm6p/Trm61p complexes, purified recombinant enzyme
was analyzed by gel filtration chromatography.
The fractions that contained Trm6p and Trm61p were
determined using SDS-PAGE followed by Coomassie blue
staining. Since the molecular weight of Trm6p is 55 kDa,
and that of Trm61p is 44 kDa, a heterotetramer would
be �200 kDa. The elution pattern of Trm6p/Trm61p
complexes was consistent with formation of a hetero-
ligomer, possibly a heterotetramer. Furthermore,
no differences were seen between the elution profiles of
the wild-type and trm6-416, trm6-420 and trm6-504
enzymes (data not shown), which led us to hypothesize
that the substitutions in the Trm6p mutants were not
enough to destabilize the predicted tetramer because other
interactions provided by amino acids on Trm61p
remained intact. Therefore, we also analyzed the trm61-
255 mutant and the trm6-416/trm61-255 double mutant.
We purified recombinant wild-type and Trm6-416p/
Trm61p, Trm6p/Trm61-255p and Trm6-416p/Trm61-
255p mutant complexes and used gel filtration chromato-
graphy to determine the sizes of these enzymes. All three
mutant enzymes fractionated the same as the wild-type
enzyme (Figure 5A). In conclusion, none of the mutations

made in Trm6p and Trm61p to the predicted protein–
protein interface of the yeast Mtase disrupted
oligomerization.
To be confident that the results obtained using

recombinant purified enzymes reflected the structure of
the enzyme in yeast, gel filtration chromatography was
also performed using soluble whole cell extract from yeast
strains expressing either TRM6 (Y353), trm6-416 (Y354),
trm6-504 (Y360) or trm6-420 (Y367). The fractions
collected from the gel filtration column were subjected to
SDS-PAGE and western blotting to visualize Trm6p and
Trm61p. Again, the wild-type and mutant enzymes were
found to have the same elution patterns (Figure 5B).
In addition to gel filtration chromatography, limited
proteolysis was used to try to detect structural differences
between wild-type and mutant enzymes. After digestion of
the wild-type and trm6-416, trm6-420, trm6-504, trm61-3,
trm61-255 and trm6-416/trm61-255 enzymes with non-
specific proteases for set periods of time, no differences in
the cleavage pattern and rate were observed between wild-
type and mutant complexes (data not shown). Overall,
these experiments imply that alteration of conserved
amino acids predicted to be involved in protein–protein
interactions do not prevent oligomerization or cause
drastic changes in the overall structure of the yeast
m1A58 Mtase. Therefore, the reduced Mtase activity
observed is the result of a different defect caused by the
mutations—such as loss of either substrate or co-factor
binding.

Trm6p mutants are not defective for AdoMet binding

Previously, it was noted that TRM61 contains binding
motifs for AdoMet (34), and later it was found that
mutation of two conserved glycine residues in motif I
destroys Mtase activity (10). However, TRM6 does not
have these motifs; therefore, we did not expect the
mutations present in trm6-416, trm6-420 and trm6-504 to
affect AdoMet binding. Nevertheless, we wished to
eliminate this as a possible reason for the reduced activity
observed for these mutants, and used a ligand-binding
assay which does not rely on enzymatic activity. To this
end, saturation transfer difference-nuclear magnetic reso-
nance (STD-NMR) spectroscopy was used to measure
AdoMet binding to protein. STD-NMR is able to measure
binding to a protein, based on transfer of magnetization
from protein (which is irradiated with Rf energy) to any
ligand that comes into contact with the protein (32,36,37).
The STD signal that is measured increases in proportion
to the fractional saturation of protein-binding sites with
ligand. Using this method, AdoMet binding was detected
when magnetization was transferred from irradiated
purified protein to AdoMet. Control STD spectra
collected when the protein was not irradiated were
subtracted from those obtained when the protein was
irradiated, so that the resulting STD spectrum would
reflect only AdoMet molecules that had been in contact
with the protein. The resonances corresponding to
AdoMet protons were identified based on known 1H
NMR chemical shifts (38). Recombinant purified enzymes
were incubated with a range of AdoMet concentrations

B 

TRM6/61 Allele:
Standard reaction
(counts/min.3H)

10X Reaction
(counts/min.3H)

TRM6 2,542 26,352
trm6-416 69 147
trm6-504 98 232
trm6-420 80 598
trm61-3 64 220

trm61-255 64 62
trm6-416/trm61-255 57 88

No Enzyme 62 167

Figure 4. Purification and characterization of recombinant Trm6p/
Trm61p complexes. (A) Wild-type and mutant enzymes were purified
from E. coli whole cell extract via a polyhistidine tag on Trm6p.
Samples were analyzed by SDS-PAGE and stained with Coomassie
blue. (B) Fifteen nanomolar of purified recombinant enzyme was
incubated with 30 mM 3H-AdoMet and 150 nM in vitro transcribed
tRNAMet

i (standard reaction), or 150 nM enzyme was incubated with
30 mM 3H-AdoMet and 1.5 mM tRNAMet

i (10� reaction). After
precipitation with 5% trichloroacetic acid, insoluble material was
collected on nitrocellulose filters and 3H was measured using liquid
scintillation. The data reported is the average of duplicate experiments.
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and then subjected to STD-NMR spectroscopy in order to
generate a binding curve and an estimated Kd (see
Materials and Methods section) For wild-type enzyme,
the Kd was found to be 376� 73 mM (Table 2). The Kd

values obtained for the mutant enzymes were not
considerably different, at 206� 35 mM for trm6-504 and
634� 73 mM for trm6-416 (Table 2). trm6-420 was not
tested because the mutation present in trm6-420 is also
found in trm6-416. As a control for defective AdoMet
binding, the predicted AdoMet-binding mutant trm61-3
was also tested. Trm6p/Trm61-3p complexes showed weak
AdoMet binding only at the highest concentrations of
AdoMet tested (800 mM), so a Kd value could not be
determined. This result not only validates the specificity of
the STD-NMR assay, but also suggests that only Trm61p
is responsible for AdoMet binding, as AdoMet was not
bound even though wild-type Trm6p was present.

tRNA binding is diminished in Trm6p and Trm61p mutants

Because mutations made in Trm6p that are predicted to be
located at the Trm6p/Trm61p interface did not affect
oligomerization or AdoMet binding, we wanted to
determine whether or not tRNA binding was altered.
First, increasing amounts of purified recombinant
wild-type enzyme were incubated with radiolabeled
tRNAMet

i purified from a trm6D strain (Y146) (7).
tRNAMet

i bound by Trm6p/Trm61p complexes was
trapped on a nitrocellulose filter and quantitated by
liquid scintillation counting. A binding curve generated
from this data (Figure 6A) was used to determine the Kd

for tRNA to be 330� 80 nM. To test the tRNA-binding
ability of trm6 mutant enzymes, purified enzymes
(500 nM) were assayed as described above. The trm6-
416, trm6-420 and trm6-504 mutants did not bind
considerably more tRNA than a control reaction lacking
enzyme (Figure 6B). In addition, we did not detect tRNA
binding when the concentration of trm6-416 and trm6-420
complexes used was increased 10-fold (5 mM), and, there-
fore, could not create binding curves for these enzymes.
Because the mutations in trm61-255 and trm6-416/trm61-
255 are predicted to lie in a structurally similar region as
the trm6 mutations, and as these enzymes form oligomers
but lack activity, we tested their ability to bind tRNA.
Similar to trm6-416, trm6-420 and trm6-504 mutants, the
trm61-255 and trm6-416/trm61-255 mutants did not bind
tRNAMet

i (Figure 6B). Importantly, the trm61-3 mutant,
which we have shown is defective in AdoMet binding, is
able to bind tRNAMet

i as effectively as the wild-type

Trm6p
Trm61p

TRM6/TRM61

trm6-416/TRM61

TRM6/trm61-255

trm6-416/trm61-255

440kDa 200kDa 150kDa
A

Trm6p

Trm61p

200kDa 100kDa

Trm6-416p

Trm61p

Trm6-504p

Trm61p

Trm6-420p

Trm61p

B

Figure 5. Mutations in Trm6p and Trm61p do not prevent oligomerization. (A). Purified recombinant enzymes were fractionated using Superose 12
gel filtration chromatography and visualized using SDS-PAGE followed by Coomassie blue staining. (B) Whole cell yeast extract from a strain
expressing either TRM6 (Y353), trm6-416 (Y354), trm6-504 (Y360) or trm6-420 (Y367) was fractionated using Superose 12 gel filtration
chromatography. Fractions were analyzed using SDS-PAGE followed by western blotting with antibodies to either Trm6p or Trm61p. Positions of
molecular weight standards (Apoferritin, 443 kDa; b-Amylase, 200 kDa; Alcohol Dehydrogenase, 150 kDa; Phosphorylase b, 100 kDa) are indicated
along the top of the figures.

Table 2. AdoMet Kd values

TRM6/61 Allele Kd (mM)

TRM6 376� 73
trm6-416 634� 73
trm6-504 206� 35
trm61-3 ND�

�ND: The Kd value could not be determined as only very low
levels of binding were seen at the highest concentrations of AdoMet
tested.
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enzyme. We conclude that the reduced m1A levels
observed in vivo and the lack of Mtase activity seen
in vitro result from the inability of trm6-416, trm6-420,
trm6-504, trm61-255 and trm6-416/trm61-255 mutants to
effectively bind their tRNA substrate.

DISCUSSION

Because of the lack of information that currently exists
regarding structure–function relationships of heteroligo-
meric tRNA Mtases, we have performed a structure–
function analysis of the yeast m1A58 Mtase using a model
we created as a guide. We designed a set of mutations of
residues predicted to be involved in protein–protein
interactions in Trm6p and Trm61p that are also conserved
in TrmI, and evaluated the effects of these mutations on
enzyme function. Although we predicted these mutations
would destabilize the interactions between the subunits,
all mutants retained the ability to form heteroligomers,
even a variant with three substitutions in Trm6p

(E416A, R420A and Y422A) and three substitutions in
Trm61p (E255A, R259A and Y261A), i.e. a protein that
lacked 12 functional groups in the protein–protein inter-
face (Figure 1B and Figure S1). We then tested two trm6
mutants to see if AdoMet binding was affected by these
mutations, and found it was not. Furthermore, Trm6p
does not appear to play a role in AdoMet binding, as the
trm61-3 enzyme, which has wild-type Trm6p subunits, did
not bind AdoMet.
Although heteroligomerization and AdoMet binding

were not affected by the mutations we introduced, these
mutants did exhibit strong defects in Mtase activity,
which led us to discover that tRNA binding was
compromised. This was an unexpected finding, consider-
ing that all of the mutated residues are predicted to be
buried inside the protein and not exposed at the surface,
where they could potentially interact with the tRNA
substrate. In addition, our studies show that both Trm6p
and Trm61p contribute to tRNA binding, as mutations in
Trm61p alone abolished tRNAMet

i binding. Previous
studies had shown that Trm61p could not bind
tRNAMet

i without Trm6p, leading to the hypothesis that
Trm6p is responsible for tRNA binding (10). However,
the data presented here suggests that both subunits help to
create the architecture necessary for substrate binding.
We also observed that wild-type Trm6p/Trm61p com-
plexes did not show an increased affinity for tRNA in the
presence of S-adenosyl-L-homocysteine (data not shown).
Similarly, the trm61-3 enzyme, which cannot bind
AdoMet, binds tRNA as efficiently as wild-type enzyme,
suggesting that AdoMet binding is not required for tRNA
binding. Finally, the Kd values for AdoMet and tRNAMet

i
we report for the wild-type enzyme in this study are
�100-fold greater than the Km values we reported
previously, which were determined by measuring product
formation in Mtase activity assays (10). It should be noted
that these data are not contradictory, as Kd and Km

constants are not equivalent except in cases when the
conversion of enzyme–substrate complexes to enzyme and
product is a rate-limiting step. Since both Kd values are
greater, we presume the conversion of enzyme–substrate
to product is not a rate-limiting step.
Based on the crystal structure of TrmI, it was proposed

that the tRNA substrate is bound in two clefts, one of
which is found in the interface between the subunits and is
lined with positively charged residues (12). We have
calculated the electrostatic surface potential of the
equivalent surface of the Trm6/Trm61p tetramer, and
have found that it is negatively charged (Figure S2);
however, the flexible extensions that are present in Trm6p
and Trm61p but absent in TrmI (in particular regions
comprising residues 265–345 in Trm61p and 455–478 in
Trm6p, Figure S2) are positively charged. This suggests
that the yeast m1A58 Mtase uses a different mechanism for
tRNA recognition and binding than its prokaryotic
counterpart. Alternatively, the positively charged regions
of Trm6p and Trm61p, which we cannot accurately
position in our model, could be located in the interface
between subunits. It would be interesting to determine
whether or not the mutations that abolished tRNA
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Figure 6. Mutations in either Trm6p or Trm61p abolish tRNA binding.
(A) Various concentrations of purified recombinant wild-type enzyme
were incubated with a constant amount of 32P end-labeled tRNAMet

i
(1 nM) purified from a trm6D strain (Y146) (7). Bound tRNAMet

i was
trapped on a nitrocellulose filter and measured using liquid scintillation.
The percent bound was determined by dividing the amount of
radiolabeled tRNA bound by the total amount of radiolabeled tRNA
in each reaction. (B) Purified recombinant wild-type and mutant
enzymes were tested for tRNA binding as in (A), but with 500 nM
protein. The percent tRNAMet

i bound is reported as a percentage of
that bound by the wild-type enzyme, which was set to 100%,
corresponding to �30% of the input bound. The data reported is the
average of duplicate trials.
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binding by the yeast Mtase would cause this same defect if
present in TrmI.
Previously, it has been shown that the tRNA modifica-

tion enzyme pseudouridine 55 synthase undergoes sub-
stantial conformation changes upon binding an RNA
substrate (39). Unfortunately, the existing methodology
does not allow modeling of large conformational changes,
such as the induced fit of flexible protein loops upon the
formation of a Mtase–tRNA complex. While the muta-
tions we introduced into Trm6p and Trm61p are not
exposed to the surface, they could bring about a
conformational change of residues directly involved in
tRNA binding. In the case of large systems such as
Trm6p/Trm61p, modeling the conformational changes
induced by the mutations we introduced would be
speculative and time-consuming (in the order of years of
calculations on a supercomputer), and is beyond the scope
of this study. Therefore, we carried out only a preliminary
assessment of the relative stability of the wild-type and
mutated interface of Trm6p and Trm61p using the
modeling system Sculpt (40). Sculpt optimizes intramole-
cular contacts to minimize the potential energy due to
torsions, hydrogen bonds and van der Waals and
electrostatic interactions, while constraining bond angles,
bond lengths and dihedral angles (40). A wild-type
Trm6p/Trm61p tetramer model or a model with E416,
R420 and Y422 residues in Trm6p and E255, R259, and
Y261 in Trm61p truncated beyond Ca atoms was
subjected to energy minimization, with most of the
molecule ‘frozen’, and only the regions 413–441 in
Trm6p and 253–265 and 343–357 in Trm61p ‘thawed’
(data not shown). Using this analysis, which allowed the
protein to shift to a minimum energy conformation, the
structure of the mutant enzyme changed more than that of
the wild-type enzyme, which changed very little. The
backbone of the mutant protein is less stable because
of the extra space created by the alanine substitutions,
and because the interactions between side chains have
been lost.
Although the above-mentioned simulation must be

regarded as very preliminary and will have to be validated
by more advanced computational methods and perhaps
also by biophysical measurements, it generally agrees with
our experimental finding that mutations of residues at the
Trm6p/Trm61p interface do not disrupt oligomerization,
but interfere with tRNA binding. Thus, we propose that
the presence of salt bridges in the yeast m1A58 Mtase
(Trm61p-E255 and Trm6p-R420, and between Trm6p-
E416 and Trm61p-R259), and most likely also in bacterial
TrmI Mtases (e.g. E299-R233 in Rv2118c), serves to
establish the structure of the tRNA-binding region rather
than to promote binding of subunits to each other. We
hypothesize that the mutations reported in this work could
have long-range structural effects on the conformation of
the positively charged loop (residues 265–345) in the
Trm61p subunit, which may be involved in tRNA binding.
By identifying amino acids involved in tRNA binding, this
study has provided a foundation on which further studies
can be built, such as experiments to address our
hypothesis regarding tRNA binding and to determine

how the yeast m1A58 Mtase is able to recognize substrate
tRNAs amongst the cellular tRNA pool.

ACKNOWLEDGEMENTS

We would like to thank Dr Glenn R. Björk and Kerstin
Jacobsson for the HPLC analysis of modified nucleosides
in tRNA. Glenn R. Björk is supported by grants from the
Swedish Science Research Council (proj. B-BU 2930) and
the Swedish Cancer Foundation (proj. 680). STD-NMR
experiments were performed with the help of Dr Sheng
Cai, Chemical Proteomics Facility, Marquette University.
We thank Sarah L. Wassink for assistance with plasmid
construction and protein purification. Sarah G. Ozanick
was supported in part by a GAANN fellowship (Award
No. P200A030199-05). This work was supported by
NIGMS grant R15GM066791-01 to J.T.A. and NIH
instrumentation grant S10RR019012 to D.S.S. Funding to
pay the Open Access publication charges for this article
was provided by NIGMS grant RO1GM069949 to JTA
and GAAN fellowship award No. P200A030199-05.

Conflict of interest statement. None declared.

REFERENCES

1. Yarian,C., Townsend,H., Czestkowski,W., Sochacka,E.,
Malkiewicz,A.J., Guenther,R., Miskiewicz,A. and Agris,P.F. (2002)
Accurate translation of the genetic code depends on tRNA modified
nucleosides. J. Biol. Chem., 277, 16391–16395.
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