13 research outputs found

    Mosquito Feeding Affects Larval Behaviour and Development in a Moth

    Get PDF
    Organisms are attacked by different natural enemies present in their habitat. While enemies such as parasitoids and predators will kill their hosts/preys when they successfully attack them, enemies such as micropredators will not entirely consume their prey. However, they can still have important consequences on the performance and ecology of the prey, such as reduced growth, increased emigration, disease transmission

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    East Antarctic rifting triggers uplift of the Gamburtsev Mountains

    No full text
    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 19581. The preservation of Alpine topography in the Gamburtsevs2 may reflect extremely low long-term erosion rates beneath the ice sheet3, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root4 beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens5, 6 and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa7, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere
    corecore