71,450 research outputs found

    Massive liquid Ar and Xe detectors for direct Dark Matter searches

    Full text link
    A novel experiment for direct searches of the Dark Matter with liquid argon double-phase chamber with a mass of liquid Ar up to several hundred tons is proposed. To suppress the b-, g- and n0- backgrounds, the comparison of scintillation and ionization signals for every event is suggested. The addition in liquid Ar of photosensitive Ge(CH3)4 or C2H4 and suppression of triplet component of scintillation signals ensures the detection of scintillation signals with high efficiency and provides a complete suppression of the electron background. For the detection of photoelectrons and ionization electrons, highly stable and reliable GEM detectors must be used.Comment: 8 pages, 2 figures, 1 tabl

    Oscillatory decay of a two-component Bose-Einstein condensate

    Full text link
    We study the decay of a two-component Bose-Einstein condensate with negative effective interaction energy. With a decreasing atom number due to losses, the atom-atom interaction becomes less important and the system undergoes a transition from a bistable Josephson regime to the monostable Rabi regime, displaying oscillations in phase and number. We study the equations of motion and derive an analytical expression for the oscillation amplitude. A quantum trajectory simulation reveals that the classical description fails for low emission rates, as expected from analytical considerations. Observation of the proposed effect will provide evidence for negative effective interaction.Comment: 4 pages, 3 figue

    Significant techniques in the processing and interpretation of ERTS-1 data

    Get PDF
    The discipline oriented investigations underway at the Johnson Space Center (JSC) using ERTS-1 data provide an appropriate framework for the systematic evaluation of the various elements comprising a prototype multispectral data processing and analysis system. In particular such a system may be thought of as the integration of: (1) a preprocessing subsystem; (2) a spectral clustering subsystem, (3) a correlation and classification subsystem; (4) mensuration subsystem; and (5) an information management subsystem. Specific elements of this system are already operational at JSC. It is in the context of this system that technique development and application is being pursued at JSC. Aircraft, ERTS and EREP data will be utilized to refine the subsystem elements for each of the data acquisition systems or system combinations that are optimally suited for a specific Earth Resources application. The techniques reported are those that have been developed to date during the utilization of ERTS-1 data in this processing and analysis system

    Radio Pulse Properties of the Millisecond Pulsar PSR J0437-4715. I. Observations at 20cm

    Get PDF
    We present a total of 48 minutes of observations of the nearby, bright millisecond pulsar PSR J0437-4715 taken at the Parkes radio observatory in Australia. The data were obtained at a central radio frequency of 1380 MHz using a high-speed tape recorder that permitted coherent Nyquist sampling of 50 MHz of bandwidth in each of two polarizations. Using the high time resolution available from this voltage recording technique, we have studied a variety of single-pulse properties, most for the first time in a millisecond pulsar. We find no evidence for "diffractive" quantization effects in the individual pulse arrival times or amplitudes as have been reported for this pulsar at lower radio frequency using coarser time resolution (Ables et al. 1997). Overall, we find that the single pulse properties of PSR J0437-4715 are similar to those of the common slow-rotating pulsars, even though this pulsar's magnetosphere and surface magnetic field are several orders of magnitude smaller than those of the general population. The pulsar radio emission mechanism must therefore be insensitive to these fundamental neutron star properties.Comment: 24 Postscript pages, 11 eps figures. Accepted for publication in the Astrophysical Journal. Abbreviated abstract follow

    Performance of the WaveBurst algorithm on LIGO data

    Full text link
    In this paper we describe the performance of the WaveBurst algorithm which was designed for detection of gravitational wave bursts in interferometric data. The performance of the algorithm was evaluated on the test data set collected during the second LIGO Scientific run. We have measured the false alarm rate of the algorithm as a function of the threshold and estimated its detection efficiency for simulated burst waveforms.Comment: proceedings of GWDAW, 2003 conference, 13 pages, 6 figure

    Exact Results of the 1D 1/r21/r^2 Supersymmetric t-J Model without Translational Invariance

    Full text link
    In this work, we continue the study of the supersymmetric t-J model with 1/r^2 hopping and exchange without translational invariance. A set of Jastrow wavefunctions are obtained for the system, with eigenenergies explicitly calculated. The ground state of the t-J model is included in this set of wavefunctions. The spectrum of this t-J model consists of equal-distant energy levels which are highly degenerate.Comment: 14 pages, Late

    New Types of Off-Diagonal Long Range Order in Spin-Chains

    Full text link
    We discuss new possibilities for Off-Diagonal Long Range Order (ODLRO) in spin chains involving operators which add or delete sites from the chain. For the Heisenberg and Inverse Square Exchange models we give strong numerical evidence for the hidden ODLRO conjectured by Anderson \cite{pwa_conj}. We find a similar ODLRO for the XY model (or equivalently for free fermions in one spatial dimension) which we can demonstrate rigorously, as well as numerically. A connection to the singlet pair correlations in one dimensional models of interacting electrons is made and briefly discussed.Comment: 13 pages, Revtex v3.0, 2 PostScript figures include

    Measurement of Orbital Decay in the Double Neutron Star Binary PSR B2127+11C

    Get PDF
    We report the direct measurement of orbital period decay in the double neutron star pulsar system PSR B2127+11C in the globular cluster M15 at the rate of (3.95±0.13)×1012(-3.95 \pm 0.13) \times 10^{-12}, consistent with the prediction of general relativity at the 3\sim 3 % level. We find the pulsar mass to be mp=(1.358±0.010)Mm_p = (1.358 \pm 0.010) M_\odot and the companion mass mc=(1.354±0.010)Mm_c = (1.354 \pm 0.010) M_\odot. We also report long-term pulse timing results for the pulsars PSR B2127+11A and PSR B2127+11B, including confirmation of the cluster proper motion.Comment: 12 pages, 4 figures, accepted for publication in ApJ

    Chemical-potential standard for atomic Bose-Einstein condensates

    Get PDF
    When subject to an external time periodic perturbation of frequency ff, a Josephson-coupled two-state Bose-Einstein condensate responds with a constant chemical potential difference Δμ=khf\Delta\mu=khf, where hh is Planck's constant and kk is an integer. We propose an experimental procedure to produce ac-driven atomic Josephson devices that may be used to define a standard of chemical potential. We investigate how to circumvent some of the specific problems derived from the present lack of advanced atom circuit technology. We include the effect of dissipation due to quasiparticles, which is essential to help the system relax towards the exact Shapiro resonance, and set limits to the range of values which the various physical quantities must have in order to achieve a stable and accurate chemical potential difference between the macroscopic condensates.Comment: 13 pages, 4 figure

    Dynamically generated embeddings of spacetime

    Full text link
    We discuss how embeddings in connection with the Campbell-Magaard (CM) theorem can have a physical interpretation. We show that any embedding whose local existence is guaranteed by the CM theorem can be viewed as a result of the dynamical evolution of initial data given in a four-dimensional spacelike hypersurface. By using the CM theorem, we establish that for any analytic spacetime, there exist appropriate initial data whose Cauchy development is a five-dimensional vacuum space into which the spacetime is locally embedded. We shall see also that the spacetime embedded is Cauchy stable with respect these the initial data.Comment: (8 pages, 1 figure). A section on Cauchy Stability of the embedding was added. (To appear in Class. Quant. Grav.
    corecore