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ABSTRACT
We present a total of 48 minutes of observations of the nearby, bright millisecond pulsar PSR

J0437[4715 taken at the Parkes Observatory in Australia. The data were obtained at a central
radio frequency of 1380 MHz using a high-speed tape recorder that permitted coherent Nyquist sam-
pling of 50 MHz of bandwidth in each of two polarizations. Using the high time resolution available
from this voltage recording technique, we have studied a variety of single-pulse properties, many for the
Ðrst time in a millisecond pulsar. We show that individual pulses are broad band, have pulse widths
ranging from D10 in pulse longitude) to D300 ks (D20¡) with a mean pulse width of D65 ks(D0¡.6
(D4¡), exhibit a wide variety of morphologies, and can be highly linearly polarized. Single pulse peaks
can be as high as 205 Jy (over D40 times the average pulse peak), and have a probability distribution
similar to those of slow-rotating pulsars. We observed no single pulse energy exceeding D4.4 times the
average pulse energy, ruling out ““ giant pulses ÏÏ as have been seen for the Crab and PSR B1937]21
pulsars. PSR J0437[4715 does not exhibit classical microstructure or show any signs of a preferred
timescale that could be associated with primary emitters ; single pulse modulation has been observed to
be consistent with amplitude-modulated noise down to timescales of 80 ns. We observe a signiÐcant
inverse correlation between pulse peak and width. Thus, the average pulse proÐle produced by selecting
for large pulse peaks is narrower than the standard average proÐle. We Ðnd no evidence for ““ di†ractive ÏÏ
quantization e†ects in the individual pulse arrival times or amplitudes as have been reported for this
pulsar at lower radio frequency using coarser time resolution. Overall, we Ðnd that the single-pulse
properties of PSR J0437[4715 are similar to those of the common slow-rotating pulsars, even though
this pulsarÏs magnetosphere and surface magnetic Ðeld are several orders of magnitude smaller than
those of the general population. The pulsar radio emission mechanism must therefore be insensitive to
these fundamental neutron star properties.
Subject headings : pulsars : individual (J0437[4715) È radio continuum: stars È stars : neutron

1. INTRODUCTION

Single-pulse studies of millisecond pulsars are consider-
ably more difficult to perform than are those of slow
pulsars. Faster data rates are needed to study millisecond
pulsars with comparable pulse phase resolution, and Ðner
radio frequency resolution is required to minimize the e†ect
of interstellar dispersion. Also, interstellar scattering time-
scales comparable to the pulse duration render studying
individual pulse morphologies impossible, while steep milli-
second pulsar spectra preclude observations of sufficient
sensitivity at higher radio frequencies where scattering is
less important.

Yet single-pulse studies of millisecond pulsars are highly
desirable for two reasons. First, the origin of the radio emis-

1 Hubble Fellow.
2 Current address : Jet Propulsion Laboratory, Mail Stop 306-388, 4800

Oak Grove Drive, Pasadena, California 91109-8099.

sion that has made isolated neutron stars famous is, even 30
yr after their discovery, still a mystery. The high brightness
temperatures (D1030 K) associated with the radio emission
point to coherent processes which are poorly understood
even under less exotic conditions Previous(Melrose 1996).
observations of slow pulsars have not sufficiently con-
strained the emission mechanism; the study of radio-
emission properties of millisecond pulsars may provide
important new clues. Millisecond pulsars, because of their
fast spin periods, have much smaller light-cylinder radii,
and hence magnetospheres, than slow pulsars. They also
have lower surface magnetic Ðeld strengths than the general
pulsar population (most likely resulting from their having
been ““ recycled ÏÏ by a binary companion through the accre-
tion of mass and angular momentum). If the radio emission
mechanism were at all dependent on such properties, milli-
second pulsars should have di†erent radio properties than
the slower-spinning general population. The second reason
single-pulse studies of millisecond pulsars are important is
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that millisecond pulsar timing is well known to be an
unparalleled source of precision astrometric and astro-
physical information. Among factors possibly limiting
timing precision is the stability of the average proÐle, which
depends on the properties of single pulses.

Only recently has a systematic study of single pulses from
millisecond pulsars become possible, largely due to improv-
ing computational and data recording technologies. To
date, the only such investigation has been for the 1.5 ms
pulsar PSR B1937A]21 Cordes, & Stinebring(Wolszczan,

& Backer et al.1984 ; Sallmen 1995 ; Backer 1995 ; Cognard
Interestingly, PSR B1937]21 exhibits giant radio1996).

pulses like those seen elsewhere only in the Crab pulsar.
With the single-pulse properties of only one millisecond
pulsar having been studied in any detail, the question of
whether all millisecond pulsars show similar properties
naturally arises. Unfortunately, PSR B1937]21 su†ers
interstellar scattering at timescales comparable to the dura-
tion of a single pulse at the radio frequencies at which it has
been observed, rendering detailed study of individual pulse
morphologies difficult.

Here we report on high time resolution single-pulse
studies of a second millisecond pulsar, PSR J0437[4715.
This pulsarÏs large Ñux density and low dispersion measure
(DM), and the corresponding scarcity of line-of-sight scat-
tering material, render it an obvious target for single-pulse
work. Some single-pulse investigations of PSR J0437[4715
have been reported et al. et al.(Johnston 1993 ; Ables 1997)
but none have had sufficient time resolution to resolve most
individual pulses. By using a fast recording device and
powerful supercomputers, we have been able to resolve all
pulses in our data, the narrowest being D10 ks.

2. OBSERVATIONS AND ANALYSIS

2.1. Parkes Observations
All data reported here were obtained at the 64 m radio

telescope of Parkes Observatory in New South Wales, Aus-
tralia on 1995 July 24 and 25 at a central radio frequency of
1380 MHz. Observations were made by using a
cryogenically-cooled, dual-channel system which received
orthogonal linear polarizations. The signal path from the
receiver was as follows. A local oscillator signal, locked to
the Parkes Observatory frequency standard, was ampliÐed
and then mixed with the incoming radio-frequency signal
from the receiver and low-pass Ðltered to form a single-
sideband intermediate frequency (IF). These IF signals (one
for each polarization) were relayed to the control room,
where they were ampliÐed and mixed with a second local
oscillator (LO). This second mixer operated as a baseband
quadrature mixer, with the in-phase and quadrature-phase
output signals low-pass Ðltered to 25 MHz. Thus, a total
bandwidth of 50 MHz at center frequency 1380 MHz was
available for recording. The four analog signals from the
complex downconverter were then digitized with two-bit
resolution and recorded at the Nyquist rate (400 Mbit s~1)
on a digital tape recorder (Datatape LP-400) along with
timing information synchronized to the Parkes Obser-
vatory clock. The output bus operates at 50 Msample s~1
and is 8 bits wide : 2 digitizer bits] 2 polarizations ] 2
signal phases. Thus, a single 13 minute observation resulted
in 39 Gbytes of raw voltage data. Detailed information
about the baseband mixing, digitizing, and data recording
system is reported by et al.Jenet (1997).

The epochs and durations of the observations of PSR
J0437[4715 reported on in this paper are summarized in

A calibration scan was done prior to observationsTable 1.
1 and 3 by moving the telescope o†-source and pulsing a
noise diode source at a Ðxed frequency. The amplitude of
the calibration source and hence the absolute Ñux scale in
janskys for our pulsar observations were determined by
using observations of the bright radio continuum source
Hydra.

2.2. Data Analysis
Storage of raw voltage data permits great Ñexibility in

data analysis, but also requires signiÐcant computational
power. Most data reduction was therefore done on the
massively-parallel Caltech 512-node Intel Paragon XPS
L38 supercomputer which has peak computation rate of
38.4 GÑop s~1, as well as on the 32-node Intel Paragon
XPS A4 supercomputer which has 4.3 GÑop s~1 peak com-
putation rate. Data from the Datatape recorder were read
into a 0.5 Gbyte Datatape variable rate bu†er, and then
onto the supercomputer Ðle systems via a high-speed
HIPPI network. Most analysis was done by using special-
ized parallel code written in C]], with the NX message
passing interface. For details about the hardware and
analysis software tools, see et al.Jenet (1997).

2.2.1. Dedispersion

Onceon the parallel computers, the rawdata are unpacked
into Ñoating point numbers and the interstellar dispersion is
handled by one or both of two techniques. The Ðrst tech-
nique, and the less computationally intensive, uses a soft-
ware ““ incoherent Ðlter bank,ÏÏ which simulates the output
of the conventional hardware Ðlter-bank spectrometer,
namely, samples of power in many individual narrow fre-
quency channels. The channelized data are subsequently
added with appropriate time delays to achieve a dedis-
persed time series that has time resolution limited by
residual dispersion within channels. The second more
computationally-demanding dedispersion method does a
direct Fourier deconvolution of the interstellar medium
transfer function, i.e., ““ coherent dedispersion ÏÏ &(Hankins
Rickett For PSR J0437[4715, it is easy to show that1975).
128 Ðlter-bank frequency channels are needed to minimize
single-channel dispersion and time resolution. This results
in a time resolution of 2.56 ks and a dispersion smearing of
approximately 3.26 ks. In principle, coherent dedispersion
can yield a time resolution equal to the inverse of twice the
bandwidth ; however, in practice, one is limited by the preci-
sion with which the DM is known. For PSR J0437[4715,
the uncertainty on the published DM et al.(Sandhu 1997)
implies that the true time resolution of our coherently
dedispersed time series is no better than D200 ns ; we con-

TABLE 1

EPOCHS OF OUR PARKES 1380 MHZ

OBSERVATIONS OF PSR
J0437[ 4715

Duration
Observation MJD at start (minutes)

1 . . . . . . . . . . . . 49922.81856 12.0
2 . . . . . . . . . . . . 49922.82789 13.0
3 . . . . . . . . . . . . 49923.84874 12.4
4 . . . . . . . . . . . . 49923.85768 13.3
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servatively chose to average our coherently dedispersed
time series to a time resolution of 320 ns. Higher time
resolutions, when necessary, were achieved by coherently
dedispersing a smaller bandwidth, obtained by using a
coarse-resolution software Ðlter bank. For example, we
achieved 80 ns resolution by coherently dedispersing a 6.25
MHz band. It is important to note that multifrequency DM
measurements are very accurate, but not necessarily precise.
Therefore, such DM values may be of limited use in single-
pulse studies.

The presence of large amplitude signals in the two-bit
quantized voltage data will introduce unwanted artifacts in
the Ðnal dedispersed time series if proper care is not taken.
For bright pulsars like PSR J0437[4715, appropriate cor-
rections are crucial for proper pulse-morphology analyses.
Two major quantization e†ects have been identiÐed : (1)
power underestimation and (2) power scattering. We have
minimized the power underestimation e†ects at the data
unpacking stage by dynamically adjusting the assigned
voltage levels. The e†ects of the scattered power have only
been corrected in the incoherently dedispersed data. A more
detailed discussion of these quantization e†ects and the
algorithms used to correct them may be found elsewhere
(Jenet 1998).

Thus, we produced a (coherently or incoherently) dedis-
persed time series for each of the two polarizations. The
mean value calculated over a megasample was then sub-
tracted in each polarization, and a gain factor was applied
to convert the raw data values to janskys. The channels
were then added to yield the total intensity, or Stokes I.
Faraday rotation in the interstellar medium causes a time
delay between opposite circular polarizations, as well as a
rotation of the angle of linear polarization across the band,
however, given the low DM and rotation measure (Navarro
et al. both e†ects are negligible here.1997),

2.2.2. Folding the Data with the Pulse Period

The known pulsar ephemeris et al. provid-(Sandhu 1997 ;
ed for convenience in was used with the TEMPOTable 2)
software package & Weisberg to calculate the(Taylor 1989)
expected topocentric pulse period and the pulse phase once
every 671 ms. The average pulse proÐle, shown in Figure 1,

TABLE 2

ASTROMETRIC AND SPIN PARAMETERS FOR PSR J0437[ 4715a

Parameter Value

Right Ascension (J2000) . . . . . . . . . . . . . . . . . 04h.37m. 15s.748182(4)
Declination (J2000) . . . . . . . . . . . . . . . . . . . . . . . [47¡.15@.08A.23145(5)
ka cos d (mas y~1) . . . . . . . . . . . . . . . . . . . . . . . . 121.34(6)
kd (mas y~1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [72.50(3)
Annual parallax (mas) . . . . . . . . . . . . . . . . . . . 5.6(8)
Period, P (ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.75745182525633(6)
Period derivative P0 (10~20) . . . . . . . . . . . . . 5.7295(9)
Period epoch and position (MJD) . . . . . . 50019.00
Dispersion Measure (cm~3 pc) . . . . . . . . . 2.6469(1)
Binary period, P

b
(d) . . . . . . . . . . . . . . . . . . . . . 5.741042353935(350)

x \ a
p

sin i (lt-s) . . . . . . . . . . . . . . . . . . . . . . . . . . 3.36668528(4)
Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.00001920(2)
Longitude of periastron, u (¡) . . . . . . . . . . 1.793148(20000)
Periastron epoch (MJD) . . . . . . . . . . . . . . . . . 50000.49656856(40000)
x5 (10~12lt [ s s~1) . . . . . . . . . . . . . . . . . . . . . . . 0.082(4)
Timing data span (MJD) . . . . . . . . . . . . . . . . 49373È50323

NOTE.ÈUnits of right ascension are hours, minutes, and seconds,
and units of declination are degrees, arcminutes, and arcseconds.

et al.a Sandhu 1997.

FIG. 1.ÈAverage pulse proÐle obtained by folding data from obser-
vation 3 (see There are 2048 bins across the pulse proÐle ; disper-Table 1).
sion smearing in the Ðnite-width simulated Ðlters is 3.26 ks, just larger than
one bin. The small ““ dip ÏÏ seen near phase 0.9 is an instrumental e†ect.

was obtained by dedispersing and folding the data in
observation 3, assuming a DM of 2.64515 pc cm~3. In the
Ðgure there are 2048 bins across the period, and the remain-
ing dispersion smearing due to the Ðnite size of the simu-
lated Ðlters is 3.26 ks, just larger than one bin. The pulse
morphology is identical to that seen by other groups (e.g.,

& Johnston et al. exceptManchester 1995 ; Navarro 1997)
for the presence of a broad, shallow ““ dip ÏÏ in the baseline. A
spectral analysis shows that the dip is not dispersed. Hence,
it is an instrumental artifact. Since each pulse of emission
lasts only about 400 ks in our 50 MHz bandpass, the dip,
which is about 2 ms away from the main peak, should not
a†ect the remainder of the analysis. We suspect that this dip
is the result of some nonlinear process occurring in the
receiver chain when the pulse is outside of our bandpass,
although we have not yet seen this e†ect in other pulsars
observed with the same receiver chain.

3. RESULTS AND DISCUSSION

3.1. General Features of Single Pulses
is a gray-scale plot of 12.5 s of data phaseFigure 2

aligned with the pulse peak. Only 368 ks on either side of
the main peak is shown. Data used for this plot are incoher-
ently dedispersed, corresponding to a time resolution of
2.56 ks with 3.26 ks DM smearing (as for No evi-Fig. 1).
dence for drifting subpulses can be seen in this Ðgure. Figure

does show regions where the pulse is absent, but we found2
that averaging as little as 10 of these regions reveals the
presence of a pulse. Hence, we have no evidence for pulse
nulling. The average Ñuctuation spectrum shown in Figure

displays a broad feature indicating a correlation or3
““ memory ÏÏ between pulses. The Ñuctuation spectrum is cal-
culated by Ðrst extracting a time series of intensities at a
Ðxed pulse phase and then Fourier transforming this time
series In order to reduce the variance in the(Backer 1973).
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FIG. 2.ÈGray-scale plot showing single pulses of PSR J0437[4715 during a single D13 s observation. Note that only the central D0.7 ms are shown; the
average proÐle formed by these pulses is shown at the top.

spectrum, 392 consecutive 256 point spectra were averaged
together. The Ñuctuation spectrum shown in wasFigure 3
calculated at zero pulse phase. Structure in the Ñuctuation
spectrum is common among slow pulsars &(Manchester
Taylor shows a ““ rogues1977 ; Backer 1973). Figure 4
gallery ÏÏ of several phase-aligned subpulses from the same
data set that produced It is clear from FiguresFigure 2. 2
and that, as is typical of pulsars, the average proÐle is a4

FIG. 3.ÈAverage intensity Ñuctuation spectrum calculated for 100,352
pulses at zero pulse phase (see text). The power density spectrum is normal-
ized by the zero frequency power. The frequency axis is normalized by the
pulsar frequency.

sum of many individual subpulses, which, although forming
a relatively stable average proÐle, individually exhibit a
variety of morphologies.

shows a semilogarithmic histogram of subpulseFigure 5
peaks in units of janskys for observation Results for our3.3
other observations are similar. In observation 3 the mean
pulse peak was 5.6 Jy. From the largest peaks inFigure 5,
observation 3 were D40 times the mean value. We have
included only subpulses that are statistically signiÐcant, i.e.,
the chances of randomly obtaining the measured on pulse
power must have been less then one in 1011, assuming
Gaussian statistics.

The low Ñux-density cuto† therefore represents our sensi-
tivity threshold, given the receiver noise temperature. Only
20% of pulses satisÐed this criterion. The distribution for
this 12.4 minute observation is well described over most of
the observed pulse peak range by the expression

log10 (N) \ a ] b ] Ppeak , (1)

where a \ 4.51^ 0.01, b \ [0.0262^ 0.0002 Jy~1, isPpeakthe peak power in janksys, and N is the number of pulses.
However, extrapolating this expression to a pulse peak of
205 Jy suggests that only 0.14 pulses at this height should
have been observed ; the one that was seen at 205 Jy

3 The mean Ñuxes in the di†erent observations were di†erent because of
scintillation. For simplicity we choose to report results from observation 3,
in which the pulsar was brightest.
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FIG. 4.ÈRandom sampling of phase-aligned individual bright pulses
from PSR J0437[4715, using a software Ðlter bank. The time resolution in
this plot is 2.56 ks, with 3.26 ks of DM smearing.

suggests that the distribution may have a high-peak tail that
longer integrations might make observable.

shows a large amplitude subpulse coherentlyFigure 6
dedispersed with an intrinsic time resolution of 10 ns. Two
factors limit our actual time resolution to D200 ns : (1) DM
uncertainties and (2) nonideal low pass Ðlter response. The
low pass Ðlters used in the downconverter have a group
delay of up to 80 ns at the upper band edge. Neither of these
e†ects would hide the presence of a coherent signal :

FIG. 5.ÈHistogram of peak pulse amplitudes in janskys from obser-
vation 3 (see dedispersed using a software Ðlter bank. The timeTable 1),
resolution was 2.56 ks. Rates for two peak values (1 s~1 and 1 minute~1)
are indicated by dashed lines. The low Ñux-density cuto† is due to an
imposed threshold criterion.

although they would make a noise signal appear more like a
Gaussian noise signal, they would not turn a coherent
signal into a random noise signal. The envelopes super-
posed on the two linear polarizations represent the 98%

FIG. 6.ÈLargest amplitude pulse in our data. The time resolution is intrinsically 10 ns but is increased to 200 ns by DM uncertainties and nonideal Ðlter
response. The dashed line represents the 98% conÐdence level (see text).
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FIG. 7.ÈLargest amplitude pulse in our data, in each of eight frequency subbands. Here the data were coherently dedispersed, then subjected to an eight
channel software Ðlterbank at zero DM. The lowest frequency channel, the Nyquist channel, appears to have a lower signal-to-noise ratio because its
statistics are intrinsically di†erent from the other channels.

conÐdence levels for statistics. If the statistics of thes12voltage data were given by a Gaussian distribution, we
would expect the power to be given by a distribution.s12Using 25 data points to either side of the point in question,
we calculated the mean power and used it to Ðnd the value
of the power such that the probability of being less then
that value is 0.98. As can be seen from this Ðgure, the sta-
tistics of the emission are consistent with modulated noise.
It is also clear from that this single pulse is sub-Figure 6
stantially linearly polarized. The largest 10 pulses in our
data all show similar behavior.

The same subpulse is shown in in each of eightFigure 7
radio-frequency subbands. It is clear that this pulse is broad
band, extending at least over 50 MHz bandwidth. The scin-
tillation bandwidth at this frequency is much larger than 50
MHz, so it is not relevant. The subband structure is consis-
tent with a Gaussian noise process.

““ Giant pulses ÏÏ from the millisecond pulsar PSR
B1937]21 have been observed Cordes, & Stin-(Wolszczan,
ebring & Backer1984 ; Sallmen 1995 ; Backer 1995 ;

et al. where ““ giant ÏÏ implies single pulsesCognard 1996),
having energies much larger than the average single-pulse
energy. To investigate whether the large pulses seen in PSR
J0437[4715 are also ““ giant ÏÏ in this sense, we produced a
histogram of pulse energies ; this is shown in forFigure 8
observation 3. Results for the other observations are
similar. Only statistically signiÐcant subpulses were
included. The vertical dashed line indicates the mean
energy. Its displacement at an energy lower than the peak of
the distribution reÑects the fact that the average pulse lies
well below the noise. The Ðgure demonstrates that there is
no evidence for single pulses having energies larger than

D4.4 times the mean pulse energy. By contrast, if PSR
J0437[4715 had the same pulse energy distribution as PSR
B1937]21 in each of our 12 minute observations, we would
have expected over 200 pulses to have energy greater than 5

FIG. 8.ÈHistogram of pulse energies for observation 3, including only
statistically signiÐcant pulses. The vertical dashed line is the mean pulse
energy, which falls below the peak of the distribution, since the mean pulse
is below the noise level. The largest pulse energy we observed was 4.4 times
the mean.
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FIG. 9.ÈPulse peak Ñux vs. pulse width. Only statistically signiÐcant
pulses were included in this plot, hence the lower cuto† near the receiver
noise temperature. Contours in the plot are 50, 100, 150, and 205 pulses.

times the mean. Thus, PSR J0437[4715 does not show any
evidence for ““ giant pulses.ÏÏ

The narrow range of pulse energies exhibited in Figure 8,
for a pulsar having very di†erent single subpulse morphol-
ogies, suggests that there should be a correlation between
pulse peak and width. This correlation is shown in Figure 9.
In the plot only statistically signiÐcant pulses are included,
which explains the lower cuto† in peak Ñux at the level of
the receiver noise.

From it is clear that by selecting and foldingFigure 9,
only large amplitude pulses, one can obtain a
““ discriminated ÏÏ average proÐle that is considerably nar-
rower than the standard average proÐle. showsFigure 10
the average proÐle obtained by selecting the 500 single
pulses which have the largest peak amplitudes in a D90 s
span. Successively wider average proÐles are obtained by
lowering that threshold. The full width at half maximum
(FWHM) of the discriminated average proÐle shown in

is only ^75 ks, which should be compared to theFigure 10
FWHM of the standard average proÐle, ^145 ks. This is
interesting, since timing precision improves as the average
proÐle width decreases ; thus, discriminated folding could,
in principle, improve pulsar timing precision. However, at
least in the case of PSR J0437[4715, the steep spectrum

eq. of pulse amplitudes precludes timing(Fig. 5, [1])
resolution improvement.

FIG. 10.ÈAverage proÐle obtained by folding the 500 single pulses
having the highest peak amplitudes in a D90 s data span. The width at half
maximum here is 75 ks.

3.2. Search for Microstructure and Other Preferred
T imescales

At least eight bright pulsars display structure in their
emission on a timescale shorter than that of the widths of
the average pulse proÐle and individual subpulses

& Taylor Such ““microstructure ÏÏ has(Manchester 1977).
not previously been detectable in millisecond pulsars
because of both insufficient time resolution of observations
and DM-smearing and multipath scattering. Our data on
PSR J0437[4715 present the Ðrst opportunity to detect
microstructure in a millisecond pulsar. Along with classical
microstructure, we can also look for evidence of preferred
timescales in the emission that may be due to the presence
of primary emitters. The noiselike statistics of pulsar emis-
sion along with the high brightness temperatures lead one
to postulate the existence of many coherent emitters, or
primary emitters, adding up incoherently to form the
observed emission (Melrose 1996).

We searched for preferred timescales by performing
careful autocorrelation function (ACF) analyses of the inco-
herently and coherently dedispersed data. Preferred time-
scales would present themselves as rapid changes in the
slope of the ACF (i.e., a ““ break ÏÏ) and/or local minima and
maxima in the ACF. In the incoherently dedispersed data,
the time resolution is limited to D3 ks ; we Ðnd no evidence
for microstructure in the D120,000 incoherently dedis-
persed pulses. In order to search with higher time
resolution, ACFs were produced for D14,000 consecutive
coherently-dedispersed pulses, as well as D1000 of the
largest amplitude coherently dedispersed pulses. Note that
the e†ective time resolution of the coherently dedispersed
data is limited to D200 ns by DM uncertainties and non-
ideal Ðlter response. No structure was seen in the ACF (See

It is possible that the microstructures could beFig. 11).
individually narrow band. Hence, larger bandwidths may
wash out any preferred timescales. We coherently dedis-
persed several subbands ranging in width from 6.25 to 781
KHz and centered at 1380 MHz. Again, we found no evi-
dence for preferred timescales. Note that the highest time
resolution achieved was 80 ns (\1/2 ] 6.25] 106).

3.3. Coherent Radiation Patterns?
et al. have reported on single-pulse obser-Ables (1997)

vations of PSR J0437[4715 at an observing frequency of

FIG. 11.ÈAutocorrelation function for D14,000 consecutive coherently
dedispersed pulses. The inset is the same data plotted on a smaller scale.
Since no sharp changes in the slope or local maxima or minima can be
seen, there is no evidence for any preferred timescales other then the sub-
pulse width.
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326.5 MHz. They found regularly-spaced peaks in a
smoothed arrival time distribution of the largest 500 single
pulses in each of their 70 s samples. These peaks were
spaced by D20 ks, much less than their sample time, 102.4
ks. They argued, using simulations, that in spite of their
relatively slow sampling, single-pulse arrival time uncer-
tainties of D5 ks could be obtained, and hence the fringes
could be resolved. The fringes implied that certain pulse
phases were preferred for single pulses, which they inter-
preted as evidence for a coherent di†ractive radiation
pattern in the pulsarÏs emission. They emphasized that their
results were for the largest amplitude pulses only, which
they assumed to be of di†erent origin than the emission
resulting in the standard proÐle. Their results predict that
with higher time resolution observations, such as those dis-
cussed in this paper, the average proÐle obtained by folding
the largest amplitude pulses should show the same fringe
pattern.

in which we have folded only the highestFigure 10,
amplitude pulses, shows no evidence for any structure,
apart from an asymmetric shoulder on the leading edge,
which was seen by et al. We have repeated thisAbles (1997).
analysis by varying the integration time and pulse thresh-
old, and Ðnd similar results. We note that our fractional
bandwidth is the same as that of et al. henceAbles (1997),
the e†ects of the Ðnite bandwidth should be identical. If
their apparent fringes were due to a coherent di†ractive
radiation pattern, the fringe spacing should scale with
wavelength ; thus, we would have expected fringe spacings
of D4.7 ks, much larger than the 320 ns time resolution of

Given the relative sensitivities of our observ-Figure 10.
ations and theirs together with the pulsar spectral index, we
should have been able to observe their ““ spikes ÏÏ with great
ease. Thus, we Ðnd no evidence to suggest coherent radi-
ation patterns exist.

It is possible to reconcile the disagreement by postulating
that the ““ spikes ÏÏ have a di†erent radio spectrum than does
the emission forming the average proÐle. Ultimately, high
time resolution observations at 326.5 MHz will settle this
issue.

4. CONCLUSIONS

We have presented the Ðrst detailed single-pulse study of
a millisecond pulsar in which sufficient time resolution was
available to resolve single pulses as they would be seen in
the pulsar vicinity. The similarity of the single-pulse proper-
ties to those of normal slow pulsars is remarkable, given the
dramatically reduced magnetospheric volume and
magnetic-Ðeld strength of PSR J0437[4715. Indeed,

without being told the absolute sample rate, it is unlikely
that one could distinguish between this being a millisecond
or slow pulsar. To summarize, our observations of PSR
J0437[4715 have :

1. resolved individual pulses, and shown that they have a
wide variety of morphologies, with multiple subpulse com-
ponents not uncommon,

2. shown that individual pulses are in general broad
band,

3. shown that individual pulses can have high linear
polarization,

4. provided neither evidence for giant pulses as observed
in the Crab pulsar and PSR B1937]21 nor for pulse
nulling or drifting subpulse phenomena,

5. found structure in the intensity Ñuctuation spectrum,
6. revealed a correlation of pulse peak with pulse width

so that the average proÐle formed from only the highest
amplitude pulses is much narrower than the conventional
average proÐle,

7. not shown any evidence for microstructure or pre-
ferred timescales º80 ns,

8. shown that the emission is consistent with an ampli-
tude modulated noise model,

9. provided no evidence to support the claim made by
et al. of the detection of coherent radiationAbles (1997)

patterns.

Because no self-consistent radio emission mechanism
context exists (see, e.g., in which to discussMelrose 1996)
these results, it is difficult to say how such models are con-
strained. Indeed, previous slow pulsar single pulse studies
su†ered from the same difficulty. However, it is often the
case that fundamental insights become apparent when
known phenomenon are taken to extremes ; this, and
improved tape recording and computer technologies that
permit single pulse studies of millisecond pulsars, provided
our motivation in undertaking this analysis. Similar studies
of other millisecond pulsars may eventually lead to an
understanding of the radio emission mechanism.
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