94,037 research outputs found

    Mobile radio alternative systems study. Volume 1: Traffic model

    Get PDF
    The markets for mobile radio services in non-urban areas of the United States are examined for the years 1985-2000. Three market categories are identified. New Services are defined as those for which there are different expressed ideas but which are not now met by any application of available technology. The complete fulfillment of the needs requires nationwide radio access to vehicles without knowledge of vehicle location, wideband data transmission from remote sites, one- and two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The commercial and public services market of interest to the study is drawn from existing users of mobile radio in non-urban areas who are dissatisfied with the geographical range or coverage of their systems. The mobile radio telephone market comprises potential users who require access to the public switched telephone network in areas that are not likely to be served by the traditional growth patterns of terrestrial mobile telephone services. Conservative, likely, and optimistic estimates of the markets are presented in terms of numbers of vehicles that will be served and the radio traffic they will generate

    Analysis of thematic mapper simulator data acquired during winter season over Pearl River, Mississippi, test site

    Get PDF
    Digital processed aircraft-acquired thematic mapping simulator (TMS) data collected during the winter season over a forested site in southern Mississippi are presented to investigate the utility of TMS data for use in forest inventories and monitoring. Analyses indicated that TMS data are capable of delineating the mixed forest land cover type to an accuracy of 92.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct, respectively. The figures reflect the performance for products produced using the best subset of channels for each forest cover type. It was found that the choice of channels (subsets) has a significant effect on the accuracy of classification produced, and that the same channels are not the most desirable for all three forest types studied. Both supervised and unsupervised spectral signature development techniques are evaluated; the unsupervised methods proved unacceptable for the three forest types considered

    The Bao-ni Matrix Cathode Formed by the Nickelate Technique

    Get PDF
    Properties of thermionic cathode produced by reacting barium carbonate and nickel oxide on nicke

    State-of-the-art and gaps for deep learning on limited training data in remote sensing

    Full text link
    Deep learning usually requires big data, with respect to both volume and variety. However, most remote sensing applications only have limited training data, of which a small subset is labeled. Herein, we review three state-of-the-art approaches in deep learning to combat this challenge. The first topic is transfer learning, in which some aspects of one domain, e.g., features, are transferred to another domain. The next is unsupervised learning, e.g., autoencoders, which operate on unlabeled data. The last is generative adversarial networks, which can generate realistic looking data that can fool the likes of both a deep learning network and human. The aim of this article is to raise awareness of this dilemma, to direct the reader to existing work and to highlight current gaps that need solving.Comment: arXiv admin note: text overlap with arXiv:1709.0030

    The Link between General Relativity and Shape Dynamics

    Full text link
    We show that one can construct two equivalent gauge theories from a linking theory and give a general construction principle for linking theories which we use to construct a linking theory that proves the equivalence of General Relativity and Shape Dynamics, a theory with fixed foliation but spatial conformal invariance. This streamlines the rather complicated construction of this equivalence performed previously. We use this streamlined argument to extend the result to General Relativity with asymptotically flat boundary conditions. The improved understanding of linking theories naturally leads to the Lagrangian formulation of Shape Dynamics, which allows us to partially relate the degrees of freedom.Comment: 19 pages, LaTeX, no figure

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Quantum Cosmological Relational Model of Shape and Scale in 1-d

    Full text link
    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1-d to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues 1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schrodinger interpretation and records theory). 2) In quantum cosmology, such as in the investigation of uniform states, robustness, and the qualitative understanding of the origin of structure formation.Comment: References and some more motivation adde

    An Invertible Linearization Map for the Quartic Oscillator

    Full text link
    The set of world lines for the non-relativistic quartic oscillator satisfying Newton's equation of motion for all space and time in 1-1 dimensions with no constraints other than the "spring" restoring force is shown to be equivalent (1-1-onto) to the corresponding set for the harmonic oscillator. This is established via an energy preserving invertible linearization map which consists of an explicit nonlinear algebraic deformation of coordinates and a nonlinear deformation of time coordinates involving a quadrature. In the context stated, the map also explicitly solves Newton's equation for the quartic oscillator for arbitrary initial data on the real line. This map is extended to all attractive potentials given by even powers of the space coordinate. It thus provides classes of new solutions to the initial value problem for all these potentials

    Shape Space Methods for Quantum Cosmological Triangleland

    Full text link
    With toy modelling of conceptual aspects of quantum cosmology and the problem of time in quantum gravity in mind, I study the classical and quantum dynamics of the pure-shape (i.e. scale-free) triangle formed by 3 particles in 2-d. I do so by importing techniques to the triangle model from the corresponding 4 particles in 1-d model, using the fact that both have 2-spheres for shape spaces, though the latter has a trivial realization whilst the former has a more involved Hopf (or Dragt) type realization. I furthermore interpret the ensuing Dragt-type coordinates as shape quantities: a measure of anisoscelesness, the ellipticity of the base and apex's moments of inertia, and a quantity proportional to the area of the triangle. I promote these quantities at the quantum level to operators whose expectation and spread are then useful in understanding the quantum states of the system. Additionally, I tessellate the 2-sphere by its physical interpretation as the shape space of triangles, and then use this as a back-cloth from which to read off the interpretation of dynamical trajectories, potentials and wavefunctions. I include applications to timeless approaches to the problem of time and to the role of uniform states in quantum cosmological modelling.Comment: A shorter version, as per the first stage in the refereeing process, and containing some new reference
    corecore