General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

```
(NASA-CR-168062) MOBILE BADIO ALTERNATIVE
Electric Co.) 60 p HC A\cup4/MF A01 CSCL 17B

\section*{MOBILE RADIO ALYERNATIVE SYSTEMS STUDY}

\section*{Volume I TRAFFIC MODEL}

\section*{JUNE 1983}



\section*{PREFACE}

The Mobile Radio Alternatives Systems Study addressed the needs for mobile communications in the non-urban areas of the United States between the present and the year 2000, and considered two ways of fulfilling the needs: by terrestrial systems only and by a combination of terrestrial and satellite systems. Results of the study are presented in three volumes.

Volume I defines the functions and services that will be needed, and presents estimates of the mobile radio traffic that will be generated and the geographical distribution of the traffic.

Volume II describes and analyzes the performance and cost of terrestrial systems concepts for meeting the needs described in Volume I.

Volume III describes and analyzes the performance and cost of sateilite-aided mobile radio systems concepts designed to serve that portion of the needs that may not be fulfilled by terrestrial systems. The volume includes a discussion of regulatory and institutional aspects of satellite land mobile communications.

A companion report, "Non-Urban Mobile Radio Demand Forecast," Final Report, June 25, 1982, was prepared by ECOsystems International Incorporated under a subcontract to the study. The report is available from the National Technical Information Service, Springfield, Virginia, 22161.

\section*{ACKNOWLEDGMENTS}

Many persons participated in the Mobile Radio Alternatives Systems Study, or contributed directly to its performance. The efforts of the following persons are deeply appreciated:

\section*{General Electric Corporate Research and Development:}

Roy E. Anderson
Howard L. Lester
William T. Tucker
Carolyn B. Morgan
Richard L. Frey
Richard J. Herbs

\section*{General Electric Space Division}

John D. Kiesling
Charles C. Allen
General Electric Mobile Communications Division
Norman S. Cromwell
Ronald C. Sisson
John A. Mallen
Thomas R. Lusk
ECOsystems International
Peter A. Castruccio
James Cooper
Loats Associates
Harry Loats
Donald G. Lloyd
Comsat General Corporation
Frederick L. Hofmann
Telocator of America
Thomas Lamoureaux
United States Independent Telephone Association
Charles Demek
The staff at NASA-Lewis Research Center provided invaluable guidance and support throughout the study. Their friendly and cooperative participation is deeply appreciated. Staff members most closely associated with the project are:

\author{
Steven M. Stevenson \\ Jack A. Salzman \\ Bruce Leroy
}

\section*{TABLE OF CONTENTS}
Section Page
1 Introduction ..... \(1-1\)
2 Mobile Services Marke! Definition and Scope ..... 2-1
2.1 Method of Defining Markets ..... 2.1
2.2 Market Categories ..... \(2 \cdot 1\)
2.2.1 New Services Market Scope ..... 2-2
2.2.2 Commercial and Public Services Market Scope ..... 2.4
2.2.3 Mobile Radio Telephone Market Scope ..... 2-5
3 Maps and Tables of Market Distributions ..... 3-1
3.1 Commercial and Public Radio and Radio Telephone ..... 3-1
3.2 Oil and Gas Services Market Distribution ..... 3-11
3.3 Trucking Industry Market Distribution ..... 3-13
3.4 Factors Affecting Future Geographical Distributions ..... 3-17
3.4.1 Commercial and Public Radio and Radio Telephone ..... 3-17
3.4.2 Trucking and Oil Services ..... 3-20
4 Elasticity of Demand ..... 4-1
4.1 Demand Versus Service Quality ..... 4-1
4.2 Demand Versus Cost ..... 4-2
5 Distance Distribution of Mobile Radio Traffic ..... 5-1
5.1 Police Systems ..... 5-1
5.2 Special Industrial Radio Service ..... 5-1
6 Radio Traffic Demand Summary ..... 6-1
6.1 Oil and Gas Services ..... 6-1
6.2 Trucking Industry ..... 6-2
6.3 Commercial and Public Services ..... 6-3
6.4 Mobile Radio Telephone ..... 6-3
6.5 Demand Totals ..... 6.3
7 Mobile Radio Services in Alaska and Hawaii ..... 7-1
7.1 Alaskan Requirements ..... 7-1
7.2 Hawaiian Requirements
Appendix A - Statistical Analysis of Potential Markets and Their Geographical Distribution ..... A-1
Appendix B - Contiguous States SMSA Areas and Area vs. Population Density ..... B-1

\section*{LIST OF ILLUSTRATIONS}
Figure Page
3-1 County Map with Overlay of 100 Satellite Footprints ..... 3.2
3-2 Demand Distribution for Mobile Telephone in Non-SMSA Countics ..... 3-9
3-3 Distribution of Counties with Fewer than 20 Persons per Square Mile ..... 3-10
3-4 Demand Distribution for Commercial and Public Radio in Non-SMSA counties ..... 3-12
3-5 Distribution of Oil and Gas Astivity ..... 3-16
3-6 Distribution of Truck Traffic ..... 3-19
4-1 Users’ Willingness to Pay to Upgrade System Satisfaction to Excellent (Cumulative by \% of Rural Users) ..... 4-4
4-2 Business and Special Industrial Users' Base Radio Costs ..... 4. 1

\section*{LIST OF TABLES}
Table Page
2-1 Capturable Mobile Radio Market - Oil and Gas Industry ..... 2.3
2-2 Capturable Mobile Radio Market - Trucking Industry ..... 2-4
2.3 Capturable Mobile Radio Market - Commercial and Public Radio Services ..... 2-5
2-4 Capturable Mobile Radio Market - Mobile Radio Telephone Service ..... 2-6
3-1 Mobile Radio Market Base - Commercial and Public Radio Service Present Use of Mobile Radio Services per State ..... 3-3
3-2 Mobile Radio Market Base - Commercial and Public Radio Service Present Use of Mobile Radio Services ..... 3-4
3-3 Mobile Radio Market Base, Mooile Radio Telephone, Estimated Number of Subscribers per State ..... 3-6
3-4 Mobile Radio Market Base, Mobile Radio Telephone, Estimated Number of Subscribers ..... 3-7
3-5 Estimated Drilling Activity for 1982 - U.S. and Canada ..... 3-14
3.6 Distribution of Oil and Gas Activity ..... 3-15
3-7 Highway Fuel Consumption of Special Fuels - 1980 ..... 3-18

\section*{Section 1}

\section*{INTRODUCTION}

The NASA-sponsored Mobile Radio Alternative Systems Study, Contract NAS3-23244, included the following tasks:
- Define traffic demand for mobile radio services in the non-urban areas of the United States from the present to the year 2000.
- Describe concepts for terrestrial systems that could meet the demand.
- Describe concepts for systems that use satellites in non-urban areas and terrestrial systems in urban areas (hybrid systems).
- Identify the regulatory and institutional aspects of the hybrid systems.

This report describes the results of the first task, the definition of the traffic demand. C nfideration is limited to the non-urban areas of the United States with emphasis on the centiguous states. There is a large and growing demand for mobile radio services in nonurten areas, and within that demand are requirements for services and functions that are not likely to be met by a continuation of the traditional growth of terrestrial mobile radio systems.

Satellites offer a technical approach to satisfying the service and functional requirements. New terrestrial systems also offer means to improve services in non-urban areas; for example, mobile radio telephones that are compatible with the urban cellular systems may be installed in many mid-size and small communities.

The development of terrestrial and satellite systems concepts, and their evaluation, require definitions of potential market size and growth, identification of needed functions, geographical distribution of the market, and user willingness to pay for the services.

The traffic demand study identified a large market for mobile radio services that require long-range communications and functions that have not been readily available in the past. The geographical distribution of the demand is critically dependent on the population density that is assumed for the definition of the non-urban market. For example, if the mobile radio telephone market area is drfined as those counties with population densities no greater than 20 persons per square mile, the demand is predominantly in the Western states. If the market is defined as counties that are not Standard Metropolitan Statistical Areas, the demand is greatest in the Midwestern and Eastern states. In order to provide a basis for satellite concepts the study considered a range of population densities and examined the geographical distribution for each of them. Separate estimates were made for each of the market categories.

Most of the data for the market analyses and many of the procedures for the analyses were provided by ECOsystems International, Inc. under a subcontract to this study with General Electric. The ECOsystems portion of the study is presented in a separate report:
"Non-Urban Mobile Radio Demand Forecast"
Final Report, June 25, 1982
Prepared for
General Electric Company, Schenectady , N.Y. 12301
Prepared by
ECOsystems International Inc., P.O. Box 225
Gambrills, Maryland, 21054
This report is available from the National Technical Information Service, Springfield, Virginia 22161.

\section*{Section 2}

\section*{MOBILE SERVICES MARKET DEFINITION AND SCOPE}

\subsection*{2.1 METHOD OF DEFINING MARKETS}

Several market surveys provided a basis for the study. ECOsystems conducted surveys of public service users and business and industrial users of mobile radio. A survey for General Electric by Opinion Research Inc. addressed potential users of mobile radio telephone.

Interviews with representatives of business and industrial mobile radio users were corducted by ECOsystems and General Electric. Most of the interviews with General Elect were initiated by industry representatives, who described needs that are not met by prese- day mobile radio technology. ECOsystems also interviewed public service users.

Three market categories were identified as a result of the surveys and interviews.
FCC licensing data were obtained for a significant number of randomly selected counties not in a Standard Metropolitan Statistical Area (SMSA). A computer tape with statistics on all counties was obtained from the Census Bureau. Correlations were found between demographic data on the tape and the licensing data for the random!'y selected counties.

The correlations are assumed to hold for all counties of the United States. Based on the correlations, licensing data and demographic data were used to com ute the mobile radio usage for each non-SMSA county of the contiguous United States. Th. uspge was defined in terms of the number of users or subscribers and the radio traffic they will generate in ERLANGS.

The geographical distributions were tabulated and plotted by summing the county demands for each state and for each footprint of a postulated 100 beam satellite.

Market penetrations were estimated on the basis of information derived from surveys, interviews, and a literature search. Conservative, likely, and optimistic predictions were made for the years 1990,1995 , and 2000. Quality and price elasticities were estimated on the basis of the surveys and interviews.

The special needs of Alaska and Hawaii were addressed separately from those of the contiguous states.

\subsection*{2.2 MARKET CATEGORIES}

The potential market for satellite-aided lend mobile radio is divided into three categories:
- New services
- Commercial and public services*
- Cellular compatible mobile radio telephone

The study examined the total potential United States market for the contiguous states within each category. The new services market was estimated for only two sub-segments: the oil and gas industry and the inter-city trucking industry. In a more general study all potential users of the new services would have to be identified and a market survey performed. We believe that the selected sub-segments are two of the most important in terms of their needs and potential revenue. For the new services, the market quantification was made by employ-

\footnotetext{
"Also termed "private radio" because it is used under the purview of the FCC Private Radio Bureau.
}
ing ancillary statistics.
The commercial and public services market was determined by sampling FCC records and interviewing randomly selected !icensees. A survey would be needed to finalize the potential non-SMSA or rural markel.

The estimate of the mobile radio telephone service market was based on survess made independently of this study. The surveys are referenced in the footnotes of Table 2.4. In order to be consistent with the analyses for the other two market segments, we employed ancillary statistics to quantify the market and used the survey results to assess the plausibility of the analysis.

Simple growth models were employed for all three segments to project the market requirements to the year 2000. The growth rates were taken from ancillary and historical information or were chosen to be consistent with anticipated future treeds for the market of interest. The formulation was chosen for its ease of implementation and clear structure. It permits easy performance of "what if" studies. When backed by a market survey, it may yield the best possible quantification of a predicted market. Summaries of the three market segments follow.

\subsection*{2.2.1 New Services Market Scope}

New services are herein defined as those for which there are expressed needs but which are not now met by any application of available technology. The functions required to fulfill the needs include voice, alphanumerics (printed messages), data at rates from 300 bits per second to 56 kilobits per second, and automatic surveillance of mobile locations.

The expressions of need were brought to NASA or to General Electric by representives of the industries that have the needs. They are unsolicited expressions of urgent, real needs. Discussions were heid with representatives of the oil and gas well services industry and the trucking industry to get their perception of their total industry needs and willingness to pay for lie new services. Other industries with expressed needs include mining, railroads, inland waterways, and information services. We present only the results of the discussions with the oil and gas well set vices irdustries and trucking industries because they are the most firmly quantified. The other industries are expected to add to the traffic demand and revenue.

The three largest suppliers of oil well services have presented their requirements for voice and data communications from well sites in the contiguous United States and the Gulf of Mexico. Together, the three suppliers provide about \(50 \%\) of the oil well logging services in those arcas. Independenily of the oil well services suppliers, two companies that provide communications for oil and gas exploration and drilling described their present attempts to use C-band satellites and Marisat for communications from remote and off shore well sites. Logistic, cost and other problems severe!y limit the usefulness of those satellites for the application. A satellite designed for land mobile radio use would be superior.

Table 2-1 presents the results of the market analysis for the oil and gas service industry. The footnotes to the table identify the data sources and list the assumptions used in the analysis.

Four trucking companies have independently described needs that could be met by:
- Automatic position surveillance of trailers from a central location
- Aulomatic transmission of brief sencor data messages from trailers, either triggered by an event at the trailer or by interrogation from the central location

Table 2-1
CAPTURABLE' MOBILE RADIO MARKET
(MOBILE UNITS)
NEW SERVICES
\begin{tabular}{|l|c|c|c|c|c|}
\hline Oil and Gas Industiv \({ }^{2}\) & \(1990^{4}\) & \(\left(A A G R^{5}\right)\) & 1995 & \(\left(A^{5} G{ }^{5}\right)\) & 2000 \\
\hline Voice (Base of \(16002^{3}\) ) & 35736 & \(\left(3 \%^{6}\right)\) & 41428 & \(\left(3 \%{ }^{6}\right)\) & 48626 \\
Duta (Hase of \(3629^{3}\) ) & 7288 & \(\left(3 \%^{6}\right)\) & 8449 & \(\left(3 \%^{6}\right)\) & 9794 \\
\hline
\end{tabular}
1. Capturable Market-The market for new mobile systems based on their provision of new services at prices comparable to current service charges for inferior or largely nonexistent services.
2. One of iwo market areas suiveyed.
3. The base comes from a study done for NASA by ECOsystems international lat. titled "Analysis of the Oil and Gas Industry Market for a Land Mobile Communications Satellite Service," January 18, 1982. ECOsystems forecasts a gross market of \(\mathbf{2 8 , 0 0 0}\) units by 1985. This is equivalent to an average annual growth rate of \(15 \%\) per year for the period 1981-1985. We employ this gross figure for our computations for the voice demand. However, since there has recently been a slump in drilling activity and most of the data requirements are for logging new wells we have performed a separate analysis for the data requirements. We assume that the average annuzl growth rate for the number of units is \(12 \%\) for the period 1981-1985. This rate is equivalent to the growth in exploration units and equals the pre-1980 growth in active drilling ries cef. "Oil and Energy Trends," July 1982). For both voice and data we assume a common an ual growth rate of \(5 \%\) for the period 1985 1990 to obtain the number of units for the year 1990. (W assume that to some extent the driting slump continues.)
4. We assume that there is essentially a \(100 \%\) penetration of the th. rket by 1990.
5. Average annual growth t.: :
6. We assume that the market is approximately saturated in the period \(\mathbf{1 9 9 0 - 2 0 0 0}\) and a common annual growth rate of \(3^{4} \%\) to the year 2000 .

\section*{- Alphanumeric or voice communication with truck drivers}

Discussions with an industry representative and with the American Trucking Association disciose that approximately 55 percent of the intercity common and contract carrier trucks operate in a dispatch mode over long distances. Generally, each driver is required to call a company dispatcher at least once each day. The calls are placed on WATS lines or are long distance calls. There is no way for a dispatcher to reach a driver directly. If dispatchers could reach drivers without delay, there could be a reduction in "deadhead" driving, without loads, and a resulting increase in operating efficiency.

If a ubiquitous mobile radio system can provide the enroute communications between drivers and dispatchers at a cost no greater than the present telephone costs, it is reasonable to expect that virtually all truckers who operate in a nationwide or regional dispatch mode would eventually adopt the satellite service because it would provide a significantly better service for a comparable price. On this basis the market was limited to carriers who operate over irregular long haul routes. The results are only for common and contract carriers for whom data are readily available. The importance of the private trucking market was not assessed but should be investigated. Some private trucking operations require dispatch communizations like the common and contract carriers. Since deregulation some private carriers have become competitive with common carriers.

Table 2-2 presents the results of the trucking industry market analysis. The footnotes identify the data sources and list the assumptions used in the analysis.

Table 2-2

\section*{CAPTURABLE' MOBILE RADIO MARKET (MOBILE UNITS) NEW SERVICES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Irinking Induxiry \({ }^{2}\)} & 1990 & (AAGR \({ }^{5}\) & 1993 & (AACR \({ }^{\text {S }}\) & 20 MNO \\
\hline Trailur & (hame of 153942 \({ }^{3}\) ) & 168439 & (2\% \({ }^{6}\) ) & 185970 & ( 2 \% \(w^{6}\) ) & 2155 \\
\hline Tricior & (Bunce of \(79421^{3}\) ) & 86900 & \(\left(2 \%^{6}\right)\) & 95945 & ( \(2 \% \%^{6}\) ) & 1054.31 \\
\hline
\end{tabular}
1. Ciphurathe Markel - The markel for new mobite systems bused on their provision of new services at prices compuratik to curfent wervine churgay for inforiof of lareely nonexistent services.
2. Ine of iwn murkel ureus surveyed.
3. The haw comen from un anulysis of financial and atatistisal data for the year 1979 from the Financial and Operations Statisticx Munual publixhed by the American Trucking Association and Moody's Transportation Volume. The total annual revenuex of the common and coniraty carriers that enguge in irregular tong haul routes is \(\$ 11,169,000,000\) (general freight common. houschokl anodx, and special commodities common and contract; ATA manual). A random sumple of 34 comnion and conirnil irresular routc carriers us reporied in Moody's shows total revenuen of \(\$ 1,516,000,000\) for 20,895 truilers and 110.7 (1) Iractors. The revenue per Irailer is thur \(\mathbf{\$ 7 2 , 5 5 3}\) and there are 1.9383 trailers per tractor on average. Using these Matimikn and the tolal revenucs one oblains the buse.
4. We employ an unnual growth rate of 2 'h Ifrom a study done for NASA by ECOsyatema International, Ince tited, "Analysis of the Tructing Industry Market for a Land Mobile Communications Sutellite Service." January 11, 1981) and an in-servise
 tems sludy we axsume that there is essentially a \(100 \%\) penetration of this specific market by the year 1990 .
5. Average annual growih rate.
h. We cmploy a browth rule of \(2 \%\). Sec footnote 4.

\subsection*{2.2.2 Commercial and Public Services Market Scupe}

The commercial and public services market is drawn from the existing users of mobile radio in non-SMSA areas of the country. Most of the communications are in the dispatch mode: direct communications between mobiles and base stations. Most users are satisfied with the performance of their radios. A portion of the users express dissatisfaction with the coverage area of their radios because their communication range is too short or because terrain features block out their signals in portions of their service area.

Range is extended by the use of repeaters located on hilltops or towers. The repeaters receive the signals on one frequency and retransmit them on another frequency to relay signals between mobiles and base stations that are not within line of sight. Repeaters are also used \(t 0\) fill in service areas that are blocked by terrain features. When high-powered base stations are used with low powered mobile units, receivers may be installed at numer us locations throughout the service area. A high powered fixed transmitter is heard by mobiles directly, but the mobile signals are received by outlying receivers and are relayed over wirelines or microwave links to the base station. Several outlying receivers may relay mobile signal. A voting device at the base selects the strongest signal. If the signai is fading, the voting device switches among the receivers and thus presents the strongest possible output signal all the time.

Repealer services are furnished in urban communities by Special Industrial Mobile Radio Service (SMXS) common carriers. In small communities, where there are few bases and mobiles, the idsers who need better range and coverage within their service area must depend
on their own or community repeaters because the invertment oy an SMRS is not justified. A satellite can aggregate the number of persons who need repeater service and thus justify provision of the service by SMSRs. The superior service that they would offer and their efforts to market the service would promote the penetration of the market.

Table 2-3 presents the results of the commercial and public services market study. The footnotes identify the data sources and list the assumptions used in the analysis.

\subsection*{2.2.3 Mobile Radio Telephone Market Scope}

There is a substantial market for mobile radio telephone in thinly populated areas of the

Table 2-3

\section*{CAPTURABLE \({ }^{\mathbf{1}}\) MOBILE RADIO MAREET (MOBILE UNITS) COMMERCIAL AND PUBLIC RADIO SERVICES}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Powible Bese Markel \({ }^{2}\)} & (AAGR \({ }^{6}\) ) & -1990 & \(\left(\mathrm{AAGR}^{6}\right)\) & 1995 & (AAGR \({ }^{\text {( }}\) & 2000 \\
\hline Conservative: & \[
\begin{gathered}
56599 \\
\text { (5\% of buse) }
\end{gathered}
\] & (7\% \({ }^{7}\) ) & 111339 & (7\% \({ }^{7}\) ) & 156 159 & (7\%) & 219021 \\
\hline Likely: & \[
\begin{gathered}
169798 \\
\text { (15\% of bese }{ }^{4} \text { ) }
\end{gathered}
\] & \(\left(10 \%^{8}\right)\) & 440412 & (10\% \({ }^{8}\) ) & 709288 & (10\% \({ }^{8}\) & 1142315 \\
\hline Optimintic: & \[
\begin{gathered}
264884 \\
\left(23.4 \% \text { of base }{ }^{5}\right)
\end{gathered}
\] & \[
\begin{gathered}
\left(18 \%^{9} \text { 1st } 5 \text { yrs }\right) \\
\left(10 \%^{8} 2 n d S y e a r s\right)
\end{gathered}
\] & \(975953{ }^{10}\) & (10\% \({ }^{\text {b }}\) ) & 1571792 & (100.") & 2531371 \\
\hline
\end{tabular}
1. Cupturable Market - The nonSMSA and/or rural market for new mobile systems based on their provision of new services or improved servicea al prices comperable to current sarvice changes.
2. Bame market totul in 1980 estimated as 6 mobiles/system \(\times 18 \mathrm{~s}, 664\) systems or \(1,131,984\) mobile units in nonSMSA counlies. Buse duta taken from ECOsystems study final report "Non-Urban Mobile Redio Demand Forecast," 1982, prepared for NASA by ECOwystems International, Inc. as part of a market study on the rural mobile radio market; 1960 count of nonSM. SA counlies employed.
3. Estimated from 1978 SIRSA membership report from survey taken on membership - \(23.4 \%\) of respondents required additional coverage with \(\mathbf{2 1 . 6 \%}\) rate of return on a membership of 11,773 of \(\mathbf{4 1 , 2 6 6}\) licensees in tine Special Induatrial Radio Service - hy assiming Special Industrial in reprementative of all licensees, SIRSA membership is representative of Special IndusIrial Inenwecs. and survey coveruge biuned loward unaccepuble wervice \(1.216 \times 11973=2543\) relurnn; (.234)(2543)/ \(11773=.0505)\)
4. Industry extimate of proportion of market that employs community repeaters with the assumption that this proportion requires improved service.
5. See footnote 3. Eatimated by assuming no bias in respondents to SIRSA Survey and in relationship of SIRSA membership to total Special Industrial licensees and by assuming Special Industrial is representative of all licensees.
6. Average annual growth rate.
7. This growth rate taken for comparative purposes. See Foolnotes 8 and 9.
8. Projected annual growth rate for 1980-1990 taken from Internationa! Remource Development, Inc. 1980 Report No. 156 "Mobile Radio Markets."
9. Average annuai growth rate for 1975 - 1900 from " 1981 Electronic Market Data Book" prepared by the Market Services Department of the Electronic Industries Association.
10. We assume that the recent past market performance continues into the near future ( 5 years) and after that the market grows al a lower rate. See footnotes 8 and 9.
country. A market survey by Opinion Research Corporation' was used to estimate the number of persons who would subscribe to cellular computible mobile radio telephone in the non-SMSA counties of the contiguous United States. The study was employed in verily the market projections for the mobile radio telephone service.

Table 2-4 presents the results of the mobile radio telephone service markel stud/. The foolnotes identify the data sources and list the assumptions used in the analysis.

I "An Appruisal of a Mabile Commmunications Product for the Consumer" Conducted for Audio Electronies Iepartment of Cieneral Eleciric Company, Prepared by Opinion Research Corporation, North Harrison Sircet, Box 183, Princeton, NJ 08540

Table 2-4

\section*{CAPTURABLE MOBILE RADIO MARKET (MOBILE UNITS) MOBILE RADIO TELEPHONE SERVICE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Powable Busc Markel \({ }^{2}\)} & \(1990^{6}\) & (AAGR \({ }^{\text {] }}\) & 1995 & (AAGR \({ }^{7}\) & 2000 \\
\hline Conservativ?: & Population of \(10,316,401^{3}\) (Counties with \(\leqslant 20\) persona/ square mile) & 51582 & (5\% \({ }^{\text {b }}\) ) & \[
\begin{gathered}
65333 \\
(.64 \% \text { of base }
\end{gathered}
\] & (5\% \({ }^{8}\) ) & \[
\begin{gathered}
84021 \\
\left(.81 \% \text { of buse }{ }^{11}\right)
\end{gathered}
\] \\
\hline Likely: & Population of \(\mathbf{4 3 . 3 7 9 , 0 0 0 4}\) :Outwide of lowns > 1000 persons) & 216895 & (7\% \({ }^{9}\) ) & \[
\begin{gathered}
30420 \% \\
\left(.70 \% \text { o: base }{ }^{11}\right)
\end{gathered}
\] & (7\% \({ }^{9}\) ) & \[
\begin{gathered}
426665 \\
\left(.98 \% \text { of omse }{ }^{\prime}\right)
\end{gathered}
\] \\
\hline Opmimistic: & Population of \(57.562,000^{5}\) (NonSMSA countica) & 287810 & (10\% \({ }^{10}\) ) & \[
\begin{gathered}
46352! \\
\text { (.81\% of base }{ }^{11} \text { ) }
\end{gathered}
\] & (7\%9) & \[
\begin{gathered}
650 \quad 112 \\
(1.1 \% \text { of baxe } 11)
\end{gathered}
\] \\
\hline
\end{tabular}
1. Capiurable Markel - The nonSMSA and/or fural markel for new mobile systems based on theif provision of new servicus or improved services at prices compurable to current service charpen.

3. Compiked from Counly and City Duta Book, 1971. Counts for extimated 197S data.
4. Stuisticul Aburact of the United Stutes, 1981, page 14. Couni from 1970 census - however, counts exsentially constunl for 195‥ 1960, and 1970 cenuuses.
5. County und City Dutu Book, 1977, page 901. Count for eatimated 1975 dats - however, the revised count for the 1900 censux humed in 1980) SMSA's is 57.115 , 1k2 (er. Statistical Absuract of the (Inited Sinten, 1981, mupe 919).

 19*0; and "CMRS: Cellular Mobile Radio Telecommunications Service-Update on an Emerging Technolozy," Lehmun Broihers Kuhn Loeb Reseurch, May 7, 1982) and with an independent market study being prepared for NASA by ECOkystoms Iniernational Imc. and Corporate Research and Development, General Electric Company.
7. Average annuul gro th rate.
4. Averayc annual telephone growth 1950-1979 tiken from "Independent Telephone Indusiry in the United Slatos," Telocommunications Journal, 1980. Vol. 47. mage 392.
9. Averame annual mobile telephone growth 1970-1979 taken from "Land Mobile Market Integration Study." Final Roport NASA C'onirmci NASW-2500, November I, 1950, by ECOsystems International, Inc., page 24.
10. Increased averape annual mobile telephone growith of recent years - see footnote 9 , page 24 for refcrences.
II. Sece explanution of footnote 6 . These penetrations are for compuraive purposes and indicate that the bure market and grawth ansumptions give results that are consistent with the cited alutien in footnote 6.

\section*{Section 3}

\section*{MAPS AND TABLES OF MARKET DISTRIBUTIONS}

\subsection*{3.1 COMMERCIAL. AND PUBLIC RADIO AND RADIO TELEPHONE}

The geographical distributions for Commercial and Public Radio and Cellular Compatible Mobile Telephone market categories are presented in Tables 3-1 through 3-4. Market demands were computed for each non-SMSA county of the contiguous United States, for uich of one hundred postulated footprints of a multibeam satellite, and for each state. Demand estimates are thu yailable at three levels of geographical granularity. This report does nor include the results at the county level because of the large volume of the data. The computer printouts of the individual county data were submitted to NASA.

Figure 3-1 is a county map of the contiguous states with the Standard Metropolitan Statislical Are:is (SMSAs) outined. The SMSA delineations were prepared by ECOsystems International, Inc. Except in New England, an SMSA is defined as a county that includes a metropolitan community with a population greater ihan 50,000 persons, or a county that contains an economically integrated set of communities with a total population greater than 50,000 persons and a county population greater than 100,000. In New England the SMSA boundaries do not necessarily conform to county boundaries. There are a total of 3110 counties in the contiguous states; 728 of them are SMSA counties as of the 1980 census. The total opulation ( 1980 census) of the SMS/.s was \(169,399,643\) person's. The population of the nonSMSA counties was \(57,115,182\) persons.

The county map, Figure 3-1, hes an overlay representing a probable set of satellite footprints. The pattern approximates the service areas of 100 beams of a large satellite in geostationary orbit at 90 degrees west longtisde. While the footprint pattern may not depict the service areas precisely, it is adequ tse for depicing the geographical distribution of demand, and the proportionate loading of individual beams oil a multibeam satellite.

Figure 3-2 presents the demand distribution for cellular compatible mobile radio telephore in non-SMSA counties as of the population that existed in 1975. This figu:s is an outline map of the contiguous states with the 100 footprint overlay. Within each footprint is a black square. The area of each square is proportı dal to the traffic demand in erlangs within the footprint. Actual values of demand are presented in Table 3-4. The footprints are numbered consecutively from the northwest, and the footprint numbers correspond to the numbers in the tables.

Figure 3-3 presents another possible demand distribution for cellular compatible mobile radio telephone. It shows the distribution for non-urban demand in counlies with mopulation densities 20 persons per square mile or fewer, again as of the 1975 population. Each dot within the outline of a state represents 25,000 persons who live in those 992 thinly populated counties. The total population is \(10,316,000\). Based on the conservative, likely, and optimistic market penetration assumptions derived from the survey results described in Appendix \(\mathbf{A}\), each dot represents 125,250 , or 375 potential subscribers. As each subscriber is expected to generate 0.028 erlangs of demand during peak hours, each dot represents a traffic demand of \(3.75,7.5\), or 11.25 erlangs depending upon one's choice of the conservative, likely, or optimistic assumption of market penetration.

It is important to note that the geographical distribution:; of Figures 3-2 and 3-3 are significantly different. The geographical distribution of demand is critically dependent upon the population density that is selected for defining the non-urban poptlation. Note that the choice of 20 persons per square mile results in the largest demand in the Western states. Choosing non-SMSA counties as the non-urban definition results in greatest demand in the

Figure 3-1. County Map with Overlay of 100 Satellite Footprints

\title{
ORIGNAL PAGE IS OF POOR QUALITY
}

Table 3-1

\section*{MOBILE RADIO MARKET BASE COMMERCIAL AND PUBLIC RADIO SERVICES PRESENT USE OF MOBILE RADIO SERVICES PER STATE - NON-SMSA AREAS ONLY}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline State & Business Users' & Industry Users & Commercial, Public Users Total \({ }^{2}\) & Business Eriangs \({ }^{3}\) & Industry Erlangs & Commercial, Peblic Ertangs Total \\
\hline Abbema & 1,335 & 420 & 2,722 & 85.8 & 21.0 & 165.7 \\
\hline Arizon: & 625 & 228 & 1,325 & 40.2 & 11.4 & 80.0 \\
\hline Arknnsas & 1.563 & 558 & 3,291 & 100.5 & 27.9 & 199.2 \\
\hline California & 1.016 & 458 & 2.286 & 65.3 & 22.9 & 136.9 \\
\hline Colorado & 1.145 & 781 & 2,990 & 73.6 & 39.1 & 174.8 \\
\hline Conneticut & 29 & 17 & 71 & 1.9 & 0.8 & 4.2 \\
\hline Detwware & 182 & 52 & 363 & 11.7 & 2.6 & 22.2 \\
\hline Florida & 9 : & 285 & 1,880 & 59.5 & 14.3 & 114.5 \\
\hline Giongia & 2.520 & 661 & 4,944 & 162.0 & 33.1 & 302.6 \\
\hline Idaho & 1.:95 & 509 & 2.645 & 76.8 & 25.5 & 158.7 \\
\hline Hlinois & 3.772 & 1.198 & 7.711 & 242.4 & 59.9 & 469.1 \\
\hline Indiana & 1979 & 534 & 3.902 & 127.2 & 26.7 & 238.8 \\
\hline lowa & 3,793 & 1,075 & 7.552 & 243.8 & 53.8 & 461.7 \\
\hline Kansas & 3,426 & 2,050 & 8,501 & 220.2 & 102.5 & 500.7 \\
\hline Ken'ucky & 2.350 & 537 & 4.478 & 151.0 & 26.9 & 276.0 \\
\hline Louisiana & 2.240 & 753 & 4.644 & 144.0 & 37.7 & 281.8 \\
\hline Mainc & 473 & 129 & 934 & 30.4 & 6.5 & 57.2 \\
\hline Maryland & 420 & 128 & 851 & 27.0 & 6.4 & 51.8 \\
\hline Massachusetts & 146 & 36 & 283 & 9.4 & 1.8 & 17.4 \\
\hline Mictigan & 1.653 & 403 & 3,192 & 106.2 & 126.4 & 196.1 \\
\hline Minnesota & 2.519 & 792 & \(\pm .142\) & 161.9 & 39.6 & 312.7 \\
\hline Missisxinpi & 2,139 & 724 & 4,440 & 137.5 & 36.2 & 269.5 \\
\hline Missouri & 2.527 & 794 & 4,154 & 162.4 & 39.7 & 313.6 \\
\hline Montana & 1.154 & 1,275 & 3,769 & 74.2 & 63.8 & 214.0 \\
\hline Nebraska & 2.197 & 1,339 & 5.485 & 141.2 & 67.0 & 323.0 \\
\hline Nevada & 181 & 63 & 379 & 11.6 & 3.2 & 22.9 \\
\hline New Hampshire & \({ }^{2} 26\) & 57 & 439 & 14.5 & 2.9 & 27.0 \\
\hline New Jersey & & 86 & 602 & 19.4 & 4.3 & 36.8 \\
\hline New Mexico & 1,2 & 673 & 2.925 & 78.0 & 33.7 & 173.2 \\
\hline New York & 1.604 & 466 & 3.213 & 103.1 & 23.3 & 1\%.1 \\
\hline North Carolina & 2.450 & 645 & 4,805 & 157.5 & 32.3 & 394.4 \\
\hline North Dakota & 1.364 & 1.607 & 4.608 & 87.7 & 80.4 & 260.7 \\
\hline Ohio & 2,299 & 656 & 4.583 & 147.8 & 32.8 & 280.2 \\
\hline Oklahoma & 2.778 & 1,362 & 6.423 & 178.5 & 68.1 & 382.7 \\
\hline Oregon & 959 & 427 & 2.150 & 61.1 & 21.4 & 128.8 \\
\hline Pennsylvania & 2.105 & 588 & 4.176 & 135.3 & 29.4 & 255.5 \\
\hline South Carolina & 963 & 290 & 1,943 & 61.9 & 14.5 & 118.5 \\
\hline South Dekota & 1,325 & 1.243 & 3.980 & 85.2 & 52.2 & 228.6 \\
\hline Tennessec & 1.483 & 252 & 2.847 & 95.3 & 17.6 & 175.2 \\
\hline Texas & 7,1.33 & 3,529 & 16,545 & 458.4 & 176.5 & 985.1 \\
\hline Utaha & 460 & 195 & 1,017 & 29.6 & 9.8 & 61.0 \\
\hline Vermont & 351 & 89 & 682 & 22.6 & 4.5 & 41.9 \\
\hline Virginia & 1,628 & 359 & 3,082 & 104.6 & 18.0 & 190.2 \\
\hline Washington & 1,013 & 517 & 2,375 & 65.1 & 25.9 & 141.1 \\
\hline West Virginia & 1.465 & 400 & 2.896 & 94.2 & 20.2 & 177.1 \\
\hline Wisconsin & 2.022 & 525 & 3.952 & 130.0 & 26.3 & 242.4 \\
\hline Wyoming & 747 & 525 & 1.974 & 48.0 & 26.3 & 115.2 \\
\hline Totel & 75,396 & 30,390 & 164,151 & 4.845.7 & 1,519.8 & 9.876.6 \\
\hline
\end{tabular}
1. "tisers" refers to the number of entities that hold mobile radio licenses regardless of number of base stations or mobiles.
2. Includes public service and other users in addition to business and special industry. See Section I.I.
3. The imprecise but common use of "erlang" is total message transmission time divided by time. The numbers of channels required to carry the traffic is larger than the numbers shown.

Table 3-2
MOBILE RADIO MARKET BASE COMMLRCIAL AND PUBLIC RADIO SERVICES PRESENT USE OF MOBILE RADIO SERVICES - NON-SMSA COUNTIES ONLY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sateflite Footprint (Sec Fize. 3-1) & Buxiness Users' & \begin{tabular}{l}
Industry \\
Users
\end{tabular} & \[
\begin{gathered}
\text { Commercial. } \\
\text { Public } \\
\text { Users } \\
\text { Total? } \\
\hline
\end{gathered}
\] & Business Erlanges & Industry Ertangs & Commerciul. Public Ertangs Tolal \\
\hline 1 & 74 & 16 & 146 & 50 & 0.8 & 4.1 \\
\hline ? & 576 & 17.1 & 1,161 & 37.4 & K .7 & 71.4 \\
\hline 3 & 885 & 547 & 2.223 & S6.9 & 27.4 & 130.7 \\
\hline 1 & 546 & 440 & 1.530 & 35.1 & 22.0 & 88.6 \\
\hline 5 & 240 & 388 & 975 & 15.4 & 19.4 & 54.0 \\
\hline 6 & 805 & 1,079 & 2,922 & 51.7 & 54.0 & 164.0 \\
\hline 7 & 1.056 & 929 & 3,0\%0 & 67.9 & 46.5 & 177.4 \\
\hline 8 & 498 & 118 & 958 & 32.0 & 5.9 & 58.8 \\
\hline 9 & 336 & 68 & 627 & 21.6 & 3.4 & 38.8 \\
\hline 10 & 76 & 12 & 136 & 4.9 & 0.6 & 8.5 \\
\hline 11 & 137 & 43 & 279 & 8.8 & 2.2 & 17.0 \\
\hline 12 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 13 & 490 & 141 & 980 & 31.5 & 7.1 & 59.8 \\
\hline 14 & 289 & 181 & 728 & 18.6 & 9.1 & 42.9 \\
\hline 15 & 525 & 227 & 1,169 & 33.7 & 11.4 & 70.0 \\
\hline 16 & 449 & 290 & 1.147 & 28.9 & 14.5 & 67.3 \\
\hline 17 & 328 & 315 & 997 & 21.1 & 15.8 & 57.2 \\
\hline 18 & 425 & 619 & 1,604 & 27.3 & 30.5 & 89.7 \\
\hline 19 & 1.542 & 863 & 3,728 & 99.1 & 43.2 & 220.7 \\
\hline 20 & 2,360 & 664 & 4.693 & 151.7 & 33.2 & 386.9 \\
\hline 21 & 1.593 & 400 & 2,951 & 96.6 & 20.0 & 180.9 \\
\hline 22 & 970 & 218 & 1.846 & 62.3 & 10.9 & 113.6 \\
\hline 23 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 24 & 730 & 212 & 1,462 & 46.9 & 10.6 & 89.2 \\
\hline 25 & 935 & 237 & 1.817 & 60.1 & 11.9 & 111.6 \\
\hline 26 & 82 & 22 & 162 & 5.3 & 1.1 & 9.9 \\
\hline 27 & 294 & 124 & 648 & 18.9 & 6.2 & 38.9 \\
\hline 28 & 176 & 89 & 411 & 11.3 & 4.5 & 24.5 \\
\hline 29 & 69 & 38 & 166 & 4.4 & 1.9 & 9.8 \\
\hline 30 & 329 & 145 & 720 & 29.6 & 7.3 & 43.2 \\
\hline 31 & 384 & '56 & 838 & 24.7 & 7.8 & 50.4 \\
\hline 32 & 519 & 3\% & 1,421 & 33.4 & 19.7 & 82.5 \\
\hline 33 & 758 & 768 & 2,366 & \(48^{7}\) & 38.4 & 135.2 \\
\hline 34 & 1.791 & \(6 ; 3\) & 3.793 & 115.1 & 32.7 & 229.3 \\
\hline 35 & ?.699 & 795 & 5,421 & 173.5 & 39.8 & 330.8 \\
\hline 36 & 1,968 & 629 & 4,030 & 126.5 & 31.5 & 245.1 \\
\hline 37 & 1,873 & 546 & 3,755 & 120.4 & 27.3 & 229.1 \\
\hline 38 & 1,936 & 570 & 3,888 & 124.4 & 28.5 & 237.3 \\
\hline 39 & 1.983 & 551 & 3.929 & 127.4 & 27.6 & 240.5 \\
\hline 411 & 571 & 174 & 1.155 & 36.6 & 8.7 & 70.3 \\
\hline 41 & 103 & 25 & 199 & 6.6 & 1.3 & 12.2 \\
\hline 42 & 123 & 58 & 280 & 7.9 & 2.9 & 16.8 \\
\hline 43 & 231 & 79 & 481 & 14.8 & 4.0 & 29.2 \\
\hline 44 & 85 & 34 & 185 & 5.5 & 1.7 & 11.1 \\
\hline 45 & 142 & 64 & 320 & 9.1 & 3.2 & 19.1 \\
\hline 40 & 456 & 197 & 1.015 & 29.3 & 9.9 & 60.8 \\
\hline 47 & 289 & 295 & 906 & 18.6 & 14.8 & 51.7 \\
\hline 48 & 1,644 & 1,204 & 4,421 & 105.7 & 60.2 & 257.4 \\
\hline 49 & 1.782 & 846 & 4,080 & 114.5 & 42.3 & 243.3 \\
\hline 50 & 1.419 & 442 & 2,888 & 91.2 & 22.1 & 175.8 \\
\hline
\end{tabular}

\footnotetext{
I "Ulars" refers to the number of entities that hold mobile radio licenses regardless of number of base stations or mobiles
2. Incluthes puhlic service and other users in addition to bersiness and special indusiry. See Section I.1.
3. Itie imbuedse but common use of "erlang" is tolal message transmission time divided by time. The nunbers of channels requirct to caris the tratlie is larger than the numbers shown.
}

Table 3-2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Satelite Foolprint (See Fie. 3-1) & Businet:
Users & \begin{tabular}{l}
Industry \\
Ifers
\end{tabular} & \begin{tabular}{l}
Commercial. Public \\
Users Total \({ }^{2}\)
\end{tabular} & Business Erlanga \({ }^{3}\) & \begin{tabular}{l}
Industry \\
Eriang:
\end{tabular} & Commercial, Public Eriangs Toul \\
\hline 51 & 2.663 & 801 & 5,374 & 171.2 & 40.1 & 327.7 \\
\hline 52 & 1,882 & 443 & 3,608 & 121.0 & 22.2 & 222.0 \\
\hline 53 & 2,449 & 622 & 4,766 & 157.4 & 31.1 & 292.5 \\
\hline 54 & 1,539 & 365 & 2,952 & 98.9 & 18.3 & 181.8 \\
\hline 55 & 570 & 163 & 1,139 & 36.6 & 8.2 & 69.5 \\
\hline 56 & 150 & 74 & 346 & 9.6 & 3.7 & 20.7 \\
\hline 57 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 58 & 86 & 39 & 194 & 5.5 & 2.0 & 11.6 \\
\hline 59 & 177 & 39 & 335 & 11.4 & 2.0 & 20.7 \\
\hline 60 & 337 & 153 & 759 & 21.7 & 7.7 & 45.5 \\
\hline 61 & 465 & 409 & 1,357 & 29.9 & 20.5 & 78.1 \\
\hline 62 & 1.499 & 907 & 3,730 & 96.3 & 45.4 & 219.9 \\
\hline 63 & 1,448 & 581 & 3,148 & 93.1 & 29.1 & 189.5 \\
\hline 64 & 849 & 270 & 1,737 & 54.6 & 13.5 & 105.6 \\
\hline 65 & 1,547 & 544 & 3,240 & 99.4 & 27.2 & 196.5 \\
\hline 66 & 1,260 & 280 & 2,392 & 81.0 & 14.0 & 147.4 \\
\hline 67 & 1,462 & 314 & 2,757 & 94.0 & 15.7 & 170.2 \\
\hline 68 & 1,733 & 493 & 3.456 & 111.4 & 24.7 & 211.1 \\
\hline 69 & 5\% & 158 & 1,169 & 38.3 & 7.9 & 71.7 \\
\hline 70 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 71 & 113 & 48 & 250 & 7.3 & 2.4 & 15.0 \\
\hline 72 & \(1 \%\) & 82 & 432 & 12.6 & 4.1 & 25.9 \\
\hline 73 & 234 & 105 & 527 & 15.0 & 5.3 & 31.5 \\
\hline 74 & 366 & 200 & 876 & 23.5 & 10.0 & 52.0 \\
\hline 75 & 1,563 & 745 & 3.581 & 100.5 & 37.3 & 213.7 \\
\hline 76 & 1,156 & 613 & 2,746 & 74.3 & 30.7 & 162.8 \\
\hline 77 & 1,247 & 448 & 2,631 & 80.1 & 22.4 & 159.1 \\
\hline 78 & 860 & 269 & 1,755 & 55.3 & 13.5 & 106.6 \\
\hline 79 & 1,304 & 493 & 2,787 & 83.8 & 24.7 & 168.3 \\
\hline 80 & 781 & 244 & 1.590 & 50.2 & 12.2 & 9.8 \\
\hline 81 & 1,212 & 322 & 2.386 & 77.9 & 16.1 & 145.8 \\
\hline 82 & 584 & 179 & 1,185 & 37.5 & 9.0 & 72.1 \\
\hline 83 & 97 & 49 & 226 & 6.2 & 2.5 & 13.5 \\
\hline 84 & 397 & 225 & 968 & 25.6 & 11.3 & 57.2 \\
\hline 85 & 613 & 384 & 1,548 & 39.4 & 19.2 & 90.9 \\
\hline 86 & 823 & 330 & 1,789 & 52.9 & 16.5 & 107.7 \\
\hline 87 & 1,309 & 458 & 2,740 & 84.1 & 22.9 & 166.1 \\
\hline 88 & 1,291 & 373 & 2,582 & 83.0 & 101.6 & 157.7 \\
\hline 89 & 365 & 104 & 727 & 23.5 & 5.2 & 44.5 \\
\hline 90 & 1,017 & 298 & 2.042 & 65.4 & 14.0 & 124.5 \\
\hline 91 & 167 & 40 & 322 & 10.7 & 2.0 & 19.8 \\
\hline 32 & 76 & 39 & 179 & 4.9 & 2.0 & 10.6 \\
\hline 93 & 742 & 349 & 1,694 & 47.7 & 17.5 & 101.1 \\
\hline 94 & 152 & 77 & 355 & 9.8 & 3.9 & 21.1 \\
\hline 95 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\%\) & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 97 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 98 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 99 & 516 & 181 & 1,081 & 33.2 & 9.1 & 65.5 \\
\hline 100 & 26 & 9 & 54 & 1.7 & 0.5 & 3.3 \\
\hline Totals & 75,396 & 30,390 & 164,151 & 484.6 & 1,519.8 & 9,876.6 \\
\hline
\end{tabular}

Table 3-3

\section*{MOBILE RADIO MARKET BASE MOBILE RADIO TELEPHONE}

\section*{ESTIMATED NUMBER OF SUBSCRIBERS PER STATE, NON-SMSA AREAS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{.. Sinles} & \multicolumn{2}{|l|}{0.5\% Penctrution'} & \multicolumn{2}{|l|}{1.0\% Penciration} & \multicolumn{2}{|l|}{1.54. l'enetrution} \\
\hline & Subxiribers & Eirlang \({ }^{2}\) & Subecribers & Erlunpe & Subscribers & Erlungs \\
\hline Alahema & 6.\%62 & 194.9 & 1.1,924 & 389.9 & 20,886 & 584.8 \\
\hline Arimina & 2.793 & 78.3 & 5.54\% & 156.7 & 8, 394 & 2350 \\
\hline Athamens & 6.45\% & | 1 I. M & 12,916 & 361, & 19.174 & .42.5 \\
\hline Catifiornia & 5,0\%5 & 141.8 & 10,131 & 283.6 & 15,195 & 425.5 \\
\hline Coborado & 2,452 & 88.7 & 4,904 & 137.3 & 7,356 & 206.0 \\
\hline Conneticut & 450 & 12.6 & 900 & 25.2 & 1,350 & 37.8 \\
\hline 1)elawure & 901 & 25.2 & 1.802 & 50.5 & 2.703 & 75.7 \\
\hline finula & 4.761 & 133.3 & 9.522 & 266.6 & 14.283 & 399.9 \\
\hline (ieorgia & 10,085 & 282.4 & 20,170 & 564.8 & 30,255 & 847.1 \\
\hline Jumbr & 3,392 & 95.0 & 6,784 & 190.0 & 10.176 & 284.9 \\
\hline Itilincis & 10.425 & 291.9 & 20.850 & 583.8 & 31,275 & 875.7 \\
\hline Inctiana & 7.898 & 220.9 & 15.776 & 441.7 & 23,664 & 662.6 \\
\hline lowas & 8,635 & 241.8 & 17.270 & 483.6 & 25,905 & 725.3 \\
\hline Kansals & 6,183 & 173.1 & 12.366 & 346.2 & 18.549 & 519.4 \\
\hline Kentucky & 9.152 & 256.3 & 18,304 & 512.5 & 27.456 & 768.8 \\
\hline I.ouisiana & 7.157 & 197.6 & 14,114 & 395.2 & 21,171 & 592.8 \\
\hline Maine & 2,401 & 67.2 & 4.802 & 134.5 & 7,203 & 201.7 \\
\hline Maryland & 2,042 & 58.3 & 4.164 & 116.6 & 6,246 & 174.9 \\
\hline Minsichusells & 1.026 & 28.7 & 2.052 & 57.5 & 3,078 & 86.2 \\
\hline Mikhiern & 7.524 & 210.7 & 15,048 & 421.3 & 22.572 & 632.0 \\
\hline Minnesmata & 7,038 & 197.1 & 14,076 & 394.1 & 21.114 & 591.1 \\
\hline Mixsixsilypi & 8,667 & 242.7 & 17,334 & 485.5 & 26,001 & 728.0 \\
\hline Missouri & 8076 & 226.1 & 16,152 & 4.52. \({ }^{\text {a }}\) & 24,228 & 678.4 \\
\hline Montuna & 2.823 & 79.0 & 5.656 & 158.: & 8.469 & 237.1 \\
\hline Netraska & 4.303 & 120.5 & 8.606 & 240.1 & 12,909 & 361.4 \\
\hline Nevedia & 575 & 16.1 & 1,150 & 32.2 & 1,725 & 48.3 \\
\hline New Ilanmphire & 1,210 & 33.9 & 2,420 & 67.8 & 3,630 & 101.6 \\
\hline New Jersey & 2.713 & 76.0 & 5,426 & 151.0 & 8,139 & 227.9 \\
\hline New Mexieo & 3,397 & 95.1 & 6,794 & 190.2 & 10,191 & 285.3 \\
\hline New York & 8,541 & 239.1 & 17,082 & 478.3 & 25,623 & 717.4 \\
\hline North Curolina & 12.721 & 361.8 & 25,842 & 723.6 & 38,763 & \(1,085.4\) \\
\hline Nowth Diakena & 2.147 & 60.1 & 4.294 & 120.2 & 6.441 & 180.3 \\
\hline Ohios & 110,223 & 284.2 & 20,446 & 572.5 & 30,669 & 858.7 \\
\hline Ontahoma & 5.766 & 161.4 & 11.532 & 322.9 & 17.298 & \(\therefore 84.3\) \\
\hline Oregon & 4.003 & 112.1 & 8,006 & 224.2 & 12,009 & 336.3 \\
\hline Pennsylvania & 10.424 & 291.9 & 20,848 & 583.7 & 31.272 & 875.6 \\
\hline crouth Carolina & 5.764 & 161.4 & 11.528 & 322.8 & 17,292 & 484.2 \\
\hline South Dekota & 2.912 & 81.5 & 5.824 & 173.1 & 8,736 & 244.6 \\
\hline Tennessee & 7.715 & 216.0 & 15.430 & 432.0 & 23,145 & 648.1 \\
\hline lexas & 12.695 & 355.5 & 25,390) & 710.9 & 3N,08.5 & 1,06\% 4 \\
\hline 1 latiol & 1.272 & 35.6 & 2,544 & 71.2 & 3,816 & 116. 8 \\
\hline Vernmont & 1.046 & 46.1 & 3.292 & 92.2 & 4,9,38 & 138.3 \\
\hline Virginia & 7.526 & 210.7 & 15.052 & 421.5 & 22,578 & 632.2 \\
\hline Washington & 3,553 & 99.5 & 7.106 & 199.0 & 10,659 & 298.5 \\
\hline Wext Virginia & 5.573 & 156.0 & 11,146 & 312.1 & 16.719 & 4681 \\
\hline Wisconsin & 7.426 & 207.9 & 14,852 & 415.9 & 22,278 & 623.8 \\
\hline Wyomins & 1.604 & 44.9 & 3,208 & 89.8 & 4.812 & 134.7 \\
\hline Totuls & 256.219 & 7.173.9 & 512,420 & 14.347.8 & 768.630 & 21,521.6 \\
\hline
\end{tabular}

\footnotetext{
1. Based on 1975 ; wpulation, hut 1980 delinition ol SMSA countics.
2. The imprecise hut common use of "erlung" is total messuge transmission time divided by time. The number of channels required to calry the traflik is larger than numbers shown.
}

Table 3-4
ORIGINAL PAGE IS
OF POOR QUALITY

\section*{MOBILE RADIO MARKET BASE MOBILE RADIO TELEPHONE}

\section*{ESTIMATED NUMBER OF SUBSCRIBERS, NON-SMSA COUNTIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Setellite
Footprint
(See Fis. 3-1)} & \multicolumn{2}{|l|}{0.5\% Penetration \({ }^{1}\)} & \multicolumn{2}{|l|}{1.0\% Penelration} & \multicolumn{2}{|l|}{1.5\% Penetration} \\
\hline & Subacribers & Ertang \({ }^{2}\) & Subucribers & Eriange & Subucribers & Eriang \\
\hline 1 & 404 & 11.3 & 808 & 22.6 & 1,212 & 33.9 \\
\hline 2 & 2.415 & 67.6 & 4,830 & 135.2 & 7.245 & 202.9 \\
\hline 3 & 2,460 & 68.9 & 4,920 & 137.8 & 7,360 & 206.6 \\
\hline 4 & 1,641 & 45.9 & 3,282 & 91.9 & 4,923 & 137.8 \\
\hline 5 & 457 & 12.8 & 914 & 25.6 & 1,371 & 38.4 \\
\hline 6 & 1,249 & 35.0 & 2,498 & 69.9 & 3,747 & 104.9 \\
\hline 7 & 1,860 & 52.1 & 3.720 & 104.2 & 5,580 & 156.2 \\
\hline 8 & 2,110 & 59.1 & 4,220 & 118.2 & 6,330 & 177.2 \\
\hline 9 & 1,403 & 39.3 & 2,806 & 78.6 & 4,209 & 117.9 \\
\hline 10 & 313 & 8.8 & 626 & 17.5 & 939 & 26.3 \\
\hline 11 & 563 & 15.8 & 1,126 & 31.5 & 1,689 & 47.3 \\
\hline 12 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 13 & 2.464 & 69.0 & 4.928 & 138.0 & 7,392 & 207.0 \\
\hline 14 & 810 & 22.7 & 1.620 & 45.4 & 2,430 & 68.0 \\
\hline 15 & 1,668 & 46.7 & 3.336 & 93.4 & 5,004 & 140.1 \\
\hline 16 & 1,071 & 30.0 & 2,142 & 60.0 & 3,213 & 90.0 \\
\hline 17 & 473 & 13.2 & 946 & 26.5 & 1,419 & 39.7 \\
\hline 18 & 1,102 & 30.9 & 2,204 & 61.7 & 3,306 & 92.6 \\
\hline 19 & 3,084 & 86.4 & 3,168 & 172.7 & 9,252 & 259.1 \\
\hline 20 & 6.053 & 169.5 & 12,106 & 339.0 & 18,159 & 508.5 \\
\hline 21 & 5,610 & 157.1 & 11,220 & 314.2 & 16.830 & 471.2 \\
\hline 22 & 4,237 & 118.6 & 8,474 & 237.3 & 12,711 & 355.9 \\
\hline 23 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 24 & 3,786 & 106.0 & 7,572 & 212.0 & 11,358 & 318.0 \\
\hline 25 & 4,972 & 139.2 & 9.944 & 278.4 & 14,916 & 417.6 \\
\hline 26 & 360 & 10.1 & 720 & 20.2 & 1,080 & 30.2 \\
\hline 27 & 1,241 & 34.7 & 2,482 & 69.5 & 3,723 & 104.2 \\
\hline 28 & 797 & 22.3 & 1,594 & 44.6 & 2,391 & 66.9 \\
\hline 29 & 147 & 4.1 & 294 & 8.2 & 441 & 12.3 \\
\hline 30 & 979 & 27.4 & 1,958 & 54.8 & 2,937 & 82.2 \\
\hline 31 & 606 & 17.0 & 1,212 & 33.9 & 1,818 & 50.9 \\
\hline 32 & 1,128 & 31.6 & 2.256 & 63.2 & 3,384 & 94.8 \\
\hline \% & 1,276 & 35.7 & 2,552 & 71.5 & 3,828 & 107.2 \\
\hline \% & 3,725 & 104.3 & 7,450 & 208.6 & 11,175 & 312.9 \\
\hline 36 & 6,484 & 181.6 & 12,968 & 363.1 & 19,452 & 544.7 \\
\hline 36 & 5,987 & 167.6 & 11,974 & 335.3 & 17,961 & 502.9 \\
\hline 37 & 8,025 & 224.7 & 16,050 & 449.4 & 24,075 & 674.1 \\
\hline 38 & 9,233 & 258.5 & 18,466 & 517.0 & 27,699 & 775 \\
\hline 39 & 9.980 & 279.4 & 19,960) & 558.9 & 29,941) & 4343 \\
\hline \(4)\) & 4.343 & 121.6 & 8,686 & 2432 & 13,024 & 3,4 8 \\
\hline 41 & 708 & 19.8 & 1,416 & 396 & 2,124 & 泩; \\
\hline 42 & 691 & 19.3 & 1,382 & 38.7 & 2,073 & 58.0 \\
\hline 43 & 1,257 & 35.2 & 2,514 & 70.4 & 3,771 & 105.6 \\
\hline 44 & 256 & 7.2 & 512 & 14.3 & 768 & 21.5 \\
\hline 45 & 319 & 8.9 & 638 & 17.9 & 957 & 26.8 \\
\hline 46 & 1,182 & 33.1 & 2,364 & 66.2 & 3,546 & 99.3 \\
\hline 47 & 777 & 21.8 & 1,554 & 43.5 & 2,331 & 65.3 \\
\hline 48 & 1,622 & 45.4 & 3,244 & 90.8 & 4,866 & 136.2 \\
\hline 49 & 4,561 & 127.7 & 9,122 & 255.4 & 13,683 & 383.1 \\
\hline 50 & 4,461 & 124.9 & 8,922 & 249.8 & 13,383 & 374.7 \\
\hline
\end{tabular}
1. Hased on 1975 mopulation, but 1980 definition of SMSA counties.
2. The imprecise tut common use of "criang" is total message transmission time divited by time. The number of channels required to carry the Iraffic is larger than numbers shown.

Table 3-4 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sulellite Ifoctprint (Sec Inge. 3-1)} & \multicolumn{2}{|l|}{0.54, Penetrution \({ }^{1}\)} & \multicolumn{2}{|l|}{1.0\% Penciration} & \multicolumn{2}{|l|}{1.5\% Penetrution} \\
\hline & Subscribers & Eriuns \({ }^{2}\) & Subucribers & Erlantis & Subscribers & Etrungs \\
\hline \$1 & 1,120 & 199.4 & 14,240 & 398.7 & 21,360 & 598.1 \\
\hline 52 & 7,819 & 218.9 & 15,638 & 437.9 & 23,457 & 656.8 \\
\hline 53 & 9,358 & 262.0 & '8,716 & 524.0 & 28,074 & 786.1 \\
\hline 54 & 7.320 & 205.0 & 1-,640 & 409.9 & 21,960 & 614.9 \\
\hline 55 & 2,452 & 61.7 & 4,904 & 137.3 & 7,356 & 206.0 \\
\hline 56 & 994 & 27.8 & 1,908 & 55.7 & 2,982 & 83.5 \\
\hline 57 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 58 & 426 & 11.9 & 852 & 23.9 & 1,278 & 35.8 \\
\hline 59 & 851 & 23.8 & 1,702 & 47.7 & 2,553 & 71.5 \\
\hline 60 & 1,495 & 41.9 & 2.990 & 83.7 & 4,485 & 125.6 \\
\hline 61 & 962 & 26.9 & 1.924 & 53.9 & 2,886 & 80.8 \\
\hline 62 & 1,915 & 53.6 & 3,830 & 107.2 & 5,745 & 160.9 \\
\hline 63 & 3,463 & 27.0 & 6,926 & 193.9 & 10.389 & 290.9 \\
\hline 64 & 3,611 & 101.1 & 7,222 & 202.2 & 10,833 & 303.3 \\
\hline 65 & 6,521 & 182.6 & 13,042 & 365.2 & 19,563 & 547.8 \\
\hline 66 & 6,249 & 175.0 & 12,4\% & 349.9 & 18.747 & 524.9 \\
\hline 67 & 8,942 & 250.4 & 17,884 & 500.8 & 26,826 & 751.1 \\
\hline 68 & 9.493 & 265.8 & 18.986 & 531.6 & 28,473 & 797.4 \\
\hline 69 & 2,641 & 73.9 & 5,282 & 147.9 & 1,923 & 221.8 \\
\hline 70 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 71 & 421 & 11.8 & 842 & 23.6 & 1,263 & 35.4 \\
\hline 72 & 847 & 23.7 & 1.694 & 47.4 & 2,541 & 71.1 \\
\hline 73 & 909 & 25.5 & 1,818 & 50.9 & 2.727 & 76.4 \\
\hline 74 & 838 & 23.5 & 1,676 & 46.9 & 2,514 & 70.4 \\
\hline 75 & 1.734 & 48.6 & 3,468 & 97.1 & 5.202 & 145.7 \\
\hline 76 & 1,502 & 42.1 & 3,004 & 84.1 & 4,506 & 126.2 \\
\hline 71 & 3,615 & 101.2 & 7.230 & 202.4 & 10.845 & 303.7 \\
\hline 78 & 3,207 & 89.8 & 6,414 & 179.6 & 9.621 & 269.4 \\
\hline 79 & 5.792 & 162.2 & 11.584 & 324.4 & 17,376 & 486.5 \\
\hline 8 & 4.4\% & 125.9 & 8,992 & 251.8 & 13,488 & 377.7 \\
\hline 81 & 4,978 & 139.4 & 9,956 & 278.8 & 14,934 & 418.2 \\
\hline 82 & 2,854 & 79.9 & 5,708 & 159.8 & 8,562 & 239.7 \\
\hline 83 & 151 & 4.2 & 302 & 8.5 & 453 & 12.7 \\
\hline 84 & 356 & 10.0 & 712 & 19.9 & 1.068 & 29.9 \\
\hline 85 & 1,367 & 38.3 & 2,734 & 76.6 & 4,101 & 114.8 \\
\hline 86 & 2.240 & 62.7 & 4.480 & 125.4 & 6,720 & 188.2 \\
\hline 87 & 3.870 & 108.4 & 7,740 & 216.7 & 11,610 & 325.1 \\
\hline 88 - & 4,173 & 116.8 & 8,346 & 233.7 & 12,519 & 350.5 \\
\hline 89 & 1,640 & 45.9 & 3,280 & 91.8 & 4,92 & 137.8 \\
\hline 90 & 3,624 & 101.5 & 7,248 & 202.9 & 10, \% & 304.4 \\
\hline 91 & 806 & 22.6 & 1,612 & 45.1 & 2,4 & 67.7 \\
\hline 92 & 220 & 6.2 & 440 & 12.3 & \(660 \%\) & 18.5 \\
\hline 93 & 1.204 & 33.7 & 2,408 & 67.4 & 3,612 & 101.1 \\
\hline 94 & 291 & 8.1 & 582 & 16.3 & 873 & 24.4 \\
\hline 95 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \% & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 97 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 98 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 99 & 2.864 & 80.2 & 5,728 & 160.4 & 8,592 & 240.6 \\
\hline 100 & 229 & 6.4 & 458 & 12.8 & 687 & 19.2 \\
\hline Tolals & 256,210 & 7.173 .9 & 512,420) & 14.347.8 & 768,630 & 21.521 .6 \\
\hline
\end{tabular}

Midwestern states with a much smaller proportion in the West.
The proportionate loading of the beams of a multibeam satellite is thus a matter that requires consideration of the minimum population density that is likely to be served by cerestrial systems. It would be advantageous to have approximately equal loading of all beams of a satellite. The independent growth of terrestrial installations can thus have an economic imppact on the satellite by reducing its overall efficiency unless it is possible to design a satellite to match the geographical distribution of demand.

The geographical distributions of demand for the other market categories are not the same as the distribution for mobile radio telephone, although the distribution for Commercial and Public Services is similar. Figure \(3-4\) presents the demand distribution for Commercial and Public Radio. The area of the black square in each footprint represents the footprint's proportionate traffic demand in erlangs. The distribution is based on the demand in non-SMSA counties. Actual demand values are presented in Table 3-2.

Figure 3-4 depicts the actual present traffic load of all commercial and public mobile radio in non-SMSA counties. Figure 3-2 depicts the predicted demand for cellular compatible mobile radio telephone in non-SMSA counties. A unit area of a black square that represents an erlang of demand for commercial and public radio in Figure 3-4 is the same unit area that represents an erlang demand for cellular compatible mobile radio telephone in Figure 3-2 based on the conservative estimate for the population of the year 1975. It is apparent that the latent demand for quality mobile radio telephone service in non-urban areas approximates at least the total present usage of mobile radio in those areas.

The geographical distribution for commercial and public radio services depends critically on the population density that is chosen for defining the non-urban population because that selection determines the counties that comprise the market area.

The choice of SMSA counties as the definition of non-urban areas can lead to inaccurate results when the size of individual counties approaches the size of a satellite footprint. San Bernardino County in California nearly corresponds to footprint 57 on Figures 3-2 and 3-4. Most of the county has a low population density and it would be a candidate for satellite service, but the entire county is classed as an SMSA because the city of San Bernardino and its related metropolitan population are in the county. If the county were divided into several smaller counties, footprint 57 would likely show a need for non-urban mobile services.

\subsection*{3.2 OIL AND GAS SERVICES MARKET DISTRIBUTION}

Because this is one of the new service markets, it is largely unpenetrated at this :time and no base exists for study. The total market projection for this subsegment given in Section 2 was based on expressions of needs described by the three largest suppliers of oil well services. Also two companies that provide communications for oil and gas exploration and drilling described their present attempts to use C-band satellites and Marist for communications from remote and offshore well sites. Logistics, cost, and other problems severely limit the usefulness of those satellites for the applications. The projection given in Section 2 assumes that overall costs are such that \(100 \%\) penetration of the market occurs by 1990. This allows for straightforward computations but should be verified by survey before finalizing the patenrial oil and gas industry market.

We shall employ the database developed in Section 2 and distribute the market via ancillary data. Since no survey has been made and there is no existing database, we must assume a predictive relationship. One way to do this is to determine the pattern of oil and gas industry activity and make some assumption as to how the service will be employed.
\[
3-9+3-10
\]

\(\xrightarrow{3-100} \cdot \frac{00 \quad 300 \quad 400}{\text { nLLE }}\)
Figure 3-4. Demand Distribution for Commercial and Public Radio in Non-SMSA counties

We shall assume that every operator (service company or oil-gas company itself) uses the service in a similar manner so that the demand is proportional to the actual activity. Thus we are assuming that demand is proportional to rig activity.

As a measure of rig activity we take the estimated number of wells completed during the first half of 1982 as reported in the Oil and Gas Journal. \({ }^{2}\) This reflects the recent slump in drilling activity and gives a current distribution of the market. The data are reported in Table 3-5. The total base voice market is 16002 mobile units and the total base data market is 3629 mobile units from Table 2-1, Section 2.2. Using the rig activity totals (shown in Table 3-5) to determine proportions gives the dernand pattern shown in Table 3-6. Statewide totals are given in Figure 3-5. As might be expected this figure does not show great similarity to those developed for the Trucking market, Commercial and Public Radio market, and the Mobile Radiotelephone market.

\subsection*{3.3 TRUCKING INDUSTRY MARKET DISTRIBUTION}

Because the trucking industry is one of the new service markets, it is unpenetrated at this time and no base exists for study. The total market projection for this subsegment given in Section 2 was based on expressions of needs described by four trucking companies and limited to carriers that operate over irregular long-haul routes. Also the results were for only common and contract carriers for which data are readily available. More importantly the private trucking market was not assessed. Since some private trucking operations require dispatch communications and compete with common and contract carriers, this segment should be investigated. Thus a survey is required to establish the potential trucking market.

We shall employ the same base as developed in Section 2 and distribute the market via ancillary data. Since no survey has been made and there is no existing data base, we must assume a predictive relationship. One way to do this is to determine the traffic pattern of the common and contract carriers that operate over irregular long-haul routes and make some assumption as to how the service will be employed.

We shall assume that every trucking operation uses the service in a similar manner so that the demand is proportional to the number of vehicles. Then we need only determine the traffic pattern of the vehicles. Data to accomplish this appear to be limited. Considerable statistical data on the trucking industry are kept: Census of Transportation, Federal Highway Statistics, American Trucking Association Statistical Tabulations, Moody's Transportation Volume, etc. Unfortunately, much of the data are economic in nature and to the writers' knowledge none have the exact traffic records required.

As a surrogate fior the required traffic patterns we shall employ the highway use of special fuels for the year 1980 as given in Table MF-25, September 1981, of Highway Statistics \(1980 .{ }^{3}\) Special fuels are motor fuels other than gasoline and gasohol and consist primarily of diesel fuel, with sinall amounts of liquified petroleum gases. Therefore the use of the fuels reflects essentially all of the intercity long-haul trucking traffic as well as bus traffic. In employing these data we make the tacit assumption that the relative proportion of irregular long-haul route traffic does not vary throughout the contiguous United States. Then the traffic we need to estimate is just a proportion of the fuel consumption for a particular portion of the country.

Since the referenced data are totals by state for the year 1980, we develop a distribution by stale. Furthermore, we assume that the year 1980 is representative of the span over which the baseline forecast was developed in Section 2. With these assumptions it follows that the

\footnotetext{
\({ }^{2}\) OGJ Report, July 26,1982, Oil and Gas Journal, 163-171.
\({ }^{3}\) U.S. Department of Transportation, Federal Highway Administration
}

Table 3-5
ESTIMATED DRILLING ACTIVITY FOR 1982-U.S. AND CANADA
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
State \\
didetrict. prownce
\end{tabular}} & \multicolumn{4}{|c|}{First half extimaten} \\
\hline & Tous comp. & Widents & Fiold welle & \[
\begin{gathered}
\text { Total f } \\
(1,090 \mathrm{f})
\end{gathered}
\] \\
\hline Alabuma & 101 & 40 & 61 & 757 \\
\hline Alutka & 95 & 15 & 0 & 982 \\
\hline Arizona & 2 & 2 & 0 & \% \\
\hline Arkeness & 541 & 10 & 460 & 2,731 \\
\hline Athntic Offthore & 3 & 3 & 0 & - \\
\hline Callifornix & 1,737 & 305 & 1,432 & 5,347 \\
\hline Onshore & 1,642 & 260 & 1,342 & 4,91\% \\
\hline Onshore & 95 & 45 & 50 & 424 \\
\hline Colorado & 1,090 & 400 & 690 & 3,993 \\
\hline Florids & 15 & 4 & 11 & 159 \\
\hline Cieorgia & 2 & 2 & 0 & 13 \\
\hline ldeho & 6 & 6 & 0 & 54 \\
\hline Illinola & 1,357 & 325 & 1,032 & 3.738 \\
\hline indiana & 393 & 150 & 243 & 313 \\
\hline Kaname & 4.217 & 1,20* & 3,009 & 13,665 \\
\hline Kentucky & 1,500 & 360 & 1,140 & 2,145 \\
\hline Loumina & 2.862 & 542 & 2,320 & 19,943 \\
\hline North & 1.600 & 167 & 1.433 & 5.776 \\
\hline South & 777 & 200 & 497 & 9,012 \\
\hline Ofinhore & 465 & 95 & 390 & 5,140 \\
\hline Michipan & 430 & 250 & 180 & 1.960 \\
\hline Minaistippi & 325 & 150 & 175 & 2,942 \\
\hline Mineouri & 40 & 30 & 50 & 35 \\
\hline Montana & 123 & 250 & 473 & 3.851 \\
\hline Nebrapkt & 325 & 157 & 168 & 1,505 \\
\hline Nevada & 13 & 11 & 2 & 70 \\
\hline New Mexico & 1,353 & 224 & 1.129 & 7.273 \\
\hline Emat & 903 & 137 & 766 & 4,889 \\
\hline West & 450 & 37 & 363 & 2,344 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Sute \\
aliatrict, Province
\end{tabular}} & \multicolumn{4}{|c|}{Plut half extimater} \\
\hline & Tetel comp. & Whanets & \[
\begin{aligned}
& \text { Flow } \\
& \text { wella }
\end{aligned}
\] & \[
\begin{gathered}
\text { Total } \mathrm{n} \\
(1,600 \mathrm{n})
\end{gathered}
\] \\
\hline New York & 300 & 40 & 260 & 207 \\
\hline North Dakota & 500 & 250 & 250 & 4,51 \\
\hline Onlo & 1,238 & 33 & 1,205 & 4,15t \\
\hline Oklahoma & 6,100 & 21 & 5,819 & 33,099 \\
\hline Oregon & 11 & 1 & 3 & 71 \\
\hline Pennayivania & 1,139 & 100 & 1.040 & 2,657 \\
\hline South Dakoks & 45 & 25 & 20 & 139 \\
\hline Teanemee & 230 & 133 & 97 & 393 \\
\hline Teres & 14,442 & 2,046 & 11.5\% & 77.519 \\
\hline Ditatict 1 & 1.26 & 221 & 1,045 & 4,923 \\
\hline District 2 & 470 & \(1{ }^{1}\) & 281 & 2,995 \\
\hline Diatrict 3 & 1.377 & 325 & 1.052 & 11,437 \\
\hline District 4 & 755 & 340 & 415 & 5,400 \\
\hline Disurict 5 & 365 & 11 & 24 & 2,319 \\
\hline Dintrict 6 & 684 & 130 & 354 & S,321 \\
\hline Dintrict 7-8 & 2,150 & 434 & 1,716 & 7,22 \\
\hline Ditrict 7-C & 1,251 & 276 & 975 & 6,762 \\
\hline District \(\frac{1}{}\) & 1,603 & 159 & 1,444 & 9,321 \\
\hline Ditirict 8-A & 1,354 & 267 & 1,087 & 7.604 \\
\hline District 9 & 2,248 & 324 & 1,924 & 7.762 \\
\hline District 10 & 795 & 50 & 745 & 4,9\%6 \\
\hline Offhore & 124 & 50 & 74 & 1,181 \\
\hline Utan & 317 & 103 & 214 & 1,952 \\
\hline Virginia & 20 & 2 & 18 & 119 \\
\hline Washington & 2 & 7 & 0 & 40 \\
\hline West Virtinia & 900 & 60 & 40 & 3,766 \\
\hline Wyomins & 1,174 & 300 & 178 & 9.354 \\
\hline Total U.S. & 43,592 & 1,697 & 34,995 & 213.079 \\
\hline Weatern Canada & 2,5\%6 & 1,276 & 1,310 & 10,425 \\
\hline Alberta & 2,200 & 1,054 & 1,146 & 8,952 \\
\hline Britich Columbia & 90 & 65 & 25 & 557 \\
\hline Manitobe & 4 & 15 & 25 & 133 \\
\hline North-Arctic & 6 & 4 & 2 & 57 \\
\hline Sesketchowan & 250 & 138 & 112 & 726 \\
\hline Eept Const Orfhore & 3 & 3 & 0 & 31 \\
\hline
\end{tabular}

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

Table 3-6
DISTRIBUTION OF OIL AND GAS ACTIVITY
\begin{tabular}{|c|c|c|}
\hline Stule district. province & Voice & Data \\
\hline Alubuma & 37 & 8 \\
\hline Alaska & 35 & 8 \\
\hline Arizona & 1 & 0 \\
\hline Arkunsan & 199 & 45 \\
\hline Allanic Offshore & 1 & 0 \\
\hline Cilifornia & 6.17 & 145 \\
\hline Onshure & 602 & 137 \\
\hline Ofshore & 35 & 8 \\
\hline Colornde & 400 & 91 \\
\hline Florida & 6 & 1 \\
\hline Ceortia & 1 & 0 \\
\hline Jdato & 2 & 0 \\
\hline llinois & 498 & 113 \\
\hline Indiana & 144 & 33 \\
\hline Kances & 1548 & 351 \\
\hline Kenlucky & 551 & 125 \\
\hline Louisiana & 1050 & 236 \\
\hline Norlh & 587 & 133 \\
\hline South & 285 & 65 \\
\hline Oinhore & 178 & 40 \\
\hline Michigun & 158 & 36 \\
\hline Mixsissippi & 119 & 27 \\
\hline Missouri & 29 & 7 \\
\hline Montana & 265 & 60 \\
\hline Nebranka & 119 & 27 \\
\hline Nevad! & 5 & 1 \\
\hline New Mexico & 4\% & 112 \\
\hline East & 331 & 75 \\
\hline West & 165 & 37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline State district, prosvince & Voice & Data \\
\hline New York & 110 & 25 \\
\hline North Dakou & 184 & 42 \\
\hline Ohio & 454 & 103 \\
\hline Oklehoma & 2239 & 9n9 \\
\hline Oregon & 4 & 1 \\
\hline Pennaylvania & 418 & 95 \\
\hline Stuith Dak ota & 17 & 4 \\
\hline Tennewec & 84 & 19 \\
\hline Texas & \$301 & 1201 \\
\hline District 1 & 465 & 105 \\
\hline District 2 & 173 & 39 \\
\hline Diatrict 3 & 505 & 115 \\
\hline District 4 & 277 & 63 \\
\hline District 5 & 134 & 30 \\
\hline District 6 & 251 & 57 \\
\hline District 7-B & 789 & 179 \\
\hline District 7-C & 459 & 104 \\
\hline District \({ }^{\text {s }}\) & 588 & 133 \\
\hline District 1-A & 497 & 113 \\
\hline District 9 & 125 & 187 \\
\hline District 10 & 292 & 66 \\
\hline Ofishore & 46 & 10 \\
\hline Utuh & 116 & 26 \\
\hline Virtinia & 7 & 2 \\
\hline Washington & 1 & 0 \\
\hline Weat Virginia & 330 & 75 \\
\hline Wyoming & 432 & 98 \\
\hline
\end{tabular}

Figure 3-5. Distribation of Oil and Gas Activity

Iraffic distribusion of the baseline market is proportional to the fuel consumption. The total Irailer market is 153,942, and the total tractor market is 79,421, both from Table 2-2, Section 2.2. Using the state fuel totals sitown in Table \(\mathbf{3 - 6}\) to determine the state proportions gives the traffic pattern shown in Figure 3-6. We note the overall similarity of this figure and those developed for the Commercial and Public Radio market and the Mobile Radiotelephone market.

\subsection*{3.4 FACTORS AFFECTING FUTURE GEOGRAPHICAL DISTRIBUTIONS}

Section 2 quant:fies the market for each of the market categories and predicts the rrarket growth up to the, ear 2000. Appendix A presents analyses of the geographical distribution of the markets, but only on the basis of present population, mobile radio usage, and distribution of activities that need new mobile radio services. Future changes in the geographical distribution are not presented.

No sound bases for predicting geographical distribution changes were determined. A prediction would require complex models that account at least for in-and-out migration. Factors that will modify the distributions include:
- Probable continuation of the trend toward increasing population in the Sunbelt and Western states wi*h stable or slightly decreasing population in the Northeast and Midwest.
- Increased economic activity in the Rocky Mountain states, includirg but not limited to energy and mineral resource exploration and recovery.
The trends may be slowed by environments' limitations, such as the comparatively limited fresh water resources in the West and the development of high-technolony industries in the Northeast that are replacing the traditional product lines that have moved away from the region.

\subsection*{3.4.1 Commercial and Public Radio and Radio Telephone}

While demographic changes that have an effect on geographic distribution of mobile radio usage will certainly take place, their effect on demand will be smpil compared to the effect of market penetration on non-urban distribution of mobile services. This fact is dramatically demonstrated by comparing Figures 3-2 and 3-3. If the served non-urban market comprises the counties thai have a population density of 20 persons per square mile or fewer, the geographic distribution is predominantly in the West. If the served nor-urban market comprises those counties that are not SMSAs, the geographic distribution is predominantly in the East. It is reasonable to expect that if the served non-urban market comprises areas with population densities below some intermediate density, the geographical distribution of demand will be quite evenly distributed throughout the country. The total population of non-SMSA counties is \(57,115,182\). The total populations of counties with 20 persons per square mile or fewer is \(10,316,000\). Thus changes in distribution with market penetration are potentially so large compared to the changes that would result from future demographic changes that it is not worthwhile to attempt predictions of temporal changes in distribution.

It is important to note that, in the context of this study, the population density that distinguishes the non-urbal، market from the urisan market is not an arbitrary choice or definition. The non-urban market is that population and those areas of the country that will not be served without special measures such as the implementation of a satellite system or a terrestrial system with a national architecture that serves nearly all of the nation's population and most of its land area.

Table 3-7
HIGHWAY FUEL CONSUMPTION OF SPECIAL FUELS 1980 (In Thousands of Gallons)
\begin{tabular}{|c|c|}
\hline State & Total \\
\hline Alabema & 322.457 \\
\hline Alacka & 46.132 \\
\hline Arizona & 218.807 \\
\hline Arkaness & 213.762 \\
\hline California & 1,153.621 \\
\hline Colorado & 141.087 \\
\hline Connecticut & 104.213 \\
\hline Delaware & 35.156 \\
\hline Dist. of Columbia & 17.293 \\
\hline Florida & 498.560 \\
\hline Geortin & 449.287 \\
\hline Hawaii & 19.169 \\
\hline Idaho & 55.085 \\
\hline Illinois & 604.245 \\
\hline Indiana & 577.215 \\
\hline Lowa & 268.905 \\
\hline Kanses & 232.972 \\
\hline Kentucky & 247.928 \\
\hline Lovisiana & 288.967 \\
\hline Maine & 57.474 \\
\hline Maryland & 165.740 \\
\hline Massachusetta & 185.113 \\
\hline Michigen & 304.285 \\
\hline Minnesota & 252.877 \\
\hline Mississippi & 212.544 \\
\hline Missouri & 359.091 \\
\hline Montana & 98.615 \\
\hline Nit-uska & 145.923 \\
\hline Ne. . an & 78.064 \\
\hline New Hampshire & 27.956 \\
\hline New Jersey & 340.076 \\
\hline New Mexico & 167.771 \\
\hline New York & 332.853 \\
\hline North Carolina & 382.817 \\
\hline North Dakota & 79.070 \\
\hline Ohio & 707.286 \\
\hline Oklahoma & 305.944 \\
\hline Orezon & 243.414 \\
\hline Pennsylvania & 705.190 \\
\hline Rhode Island & 27.187 \\
\hline South Carolina & 228.847 \\
\hline South Dakota & 73.557 \\
\hline Tennessee & 383.751 \\
\hline Texas & 1,199.933 \\
\hline Utah & 111.133 \\
\hline Vermont & 29.711 \\
\hline Virginia & 318.037 \\
\hline Washington & 235.020 \\
\hline West Virginia & 123.976 \\
\hline Wisconsin & 304.702 \\
\hline Wyoring & 93.962 \\
\hline TOTAL & 13,776.840 \\
\hline
\end{tabular}

\subsection*{3.4.2 Trucking and Oil Services}

Future distributions of mobile radio services for the trucking and oil services industries will continue to be dominated by economic activity. Traffic patterns for the trucking industry will continue to follow the total population distribution of the country, and thus will tend to shift to the Sunbelt and Western states. We do not have a valid basis for predicting the magnitude of the shift, but do not expect it to cause a major restructuring of the present distribution patterns.

Future activity in the oil and gas well servicing industry may increase in the Overthrust Belt along the eastern edge of the Rocky Mountain chain. Major activity is expected to continue in the Gulf states and the Gulf of Mexico with some increase in activity in gas well drilling in Michigan and the Northeast. The change in distribution of the mobile radio services to support the activities will reflect the geographical shift in emphasis, but no major restructuring of the present distribution patterns is expected.

PRECEDING PAGE BLANK NOT FILMED - \(3-19\)

\section*{Section 4}

\section*{ELASTICITY OF DEMAND}

\subsection*{4.1 DEMAND VERSUS SERVICE QUALITY}

The ECOsystems report \({ }^{4}\) presents an assessment of demand versus quality. The following is extracted from the report.
"By quality elasticity is meant the additional price which users are willing to pay in order to upgrade the performance of their systems from current to predetermined levels of improvement. The purpose of calculating this quantity is to assess the magnitude of the eventual 'premium' for performance which could be incorporated in the tariff structure of an eventual high-performance alternative system.
"The most reliable data to the effect of computing such premiums were found to be those furnished by SIRSA (Special Industrial Radio Service Association).
"With Special Industrial Radio Service having a nationwide growth rate in excess of \(9 \%\) per year since 1977, SIRSA surveys showed a general decline in system satisfaction with 6.6\% fewer users (primarily metropolitan users) willing to rate their communication system 'excellent' in 1979 as compared to 1977. In January 1979, SIRSA forwarded to its membership a survey designed to obtain reliable statistical information about this trend.
"For the purpose of classifying the survey data, SIRSA designated a system as 'rural' if its principal radio operations took place in a township, city, or county with less than 100,000 population. There were 1489 rural survey returns. System satisfaction indicated by rural users is shown in the following table.

\section*{RURAL SYSTEM SATISFACTION}
\begin{tabular}{lr}
\multicolumn{1}{c}{ Rating } & Percent \\
\hline Excellent & 22.9 \\
Good & 48.6 \\
Average & 19.2 \\
Fair & 6.8 \\
Poor & 2.5
\end{tabular}
"The question, asked by SIRSA to its users, of interest in evaluating service quaity elasticity was: 'Assuming your radio system satisfaction was average or below, how much would you be willing to pay to upgrade your system satisfaction to excellent?'
"The returns from the approximately 1300 rural SIRSA respondents to this question were as shown in the following table.

WILLINGNESS TO PAY TO UPGRADE SYSTEM SATISFACTION TO EXCELLENT
\begin{tabular}{ccccc}
\begin{tabular}{c} 
Willingness \\
to Pay, \(\$\)
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent Users
\end{tabular} & \begin{tabular}{c} 
Average \\
Percent Users
\end{tabular} & \begin{tabular}{c} 
Willingness to Pay \\
Per User
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Average
\end{tabular} \\
\hline- & 39.6 & 39.6 & 0 & 0 \\
100 & 23.2 & 62.8 & 23.20 & 23.20 \\
500 & 22.1 & 84.9 & 110.50 & 133.70 \\
2,500 & 12.6 & 97.5 & 315.00 & 448.70 \\
10.000 & 2.5 & 100 & 250.00 & 698.70
\end{tabular}

\footnotetext{
\({ }^{4}\) Non-Urban Mobile Radio Demand Forecast, Final Report, June 25, 1982. Prepared for General Electric Company. Prepared by ECOsystems International Incorporated, Gambrills, MD. Pages 69 ff .
}
"Figure [4-1] shows the amount that rural users are willing to pay in order to upgrade the quality of their system satisfaction to excellent.
"Figure [4-2] shows the prices which users actually pay for their base equipment. (Note that Special Industrial and Business Radio users are combined, because of their high degree of similarity.)
"Comparison of Figures [4-1 and 4-2] shows that the user's wilingness to pay a 'premium for quality' is of order 7\%."

\subsection*{4.2 DEMAND VERSUS COST}

Potential business users of cellular mobile telephone systems in the Chicago metropolitan area were surveyed by Compucon, Inc. for Rogers Radio. \({ }^{\text {S }}\) The following exerpt from the report is useu with permission of Compucon.
"Four proposed monthly price levels ( \(\$ 60, \$ 120, \$ 180, \$ 240\) ) were proposed to equal numbers of respondents. They all were asked the following question:
'Not including long distance charges, if the cost of portable or mobile phone service including the equipment lease was \(\$\) \(\qquad\) per month, how interested would you be in using this service?' Would you be:
\begin{tabular}{lrrrr} 
Level & \(\mathbf{\$ 6 0}\) & \(\mathbf{\$ 1 2 0}\) & \(\mathbf{\$ 1 8 0}\) & \(\mathbf{\$ 2 4 0}\) \\
Very Interested & \(\mathbf{9 \%}\) & \(\mathbf{3 \%}\) & \(\mathbf{4 \%}\) & \(\mathbf{6 \%}\) \\
Somewhat Interested & \(\mathbf{2 5 \%}\) & \(\mathbf{2 2 \%}\) & \(14 \%\) & \(15 \%\) \\
Not Very Interested & \(17 \%\) & \(18 \%\) & \(25 \%\) & \(21 \%\) \\
\begin{tabular}{l} 
Not at all Interested \\
Don't Know (was not
\end{tabular} & \(\mathbf{4 7 \%}\) & \(\mathbf{5 6 \%}\) & \(\mathbf{5 5 \%}\) & \(\mathbf{5 6 \%}\) \\
\begin{tabular}{l} 
read as a choice)
\end{tabular} & \(\mathbf{3 \%}\) & \(\mathbf{1 \%}\) & \(\mathbf{2 \%}\) & \(\mathbf{2 \%}\)
\end{tabular}
(One of the four price points was randomly selected by the computer and inserted in the blank.)

Those respondents who answered that they would be interested in leasing the service and equipment were then asked how many units they thought their companies would use at that price. The resuits obtained were as follows:
\begin{tabular}{crrrr} 
Number of Units & \multicolumn{1}{c}{\(\$ 60\)} & \(\$ 120\) & \multicolumn{1}{c}{\(\$ 180\)} & \(\$ 240\) \\
0 & \(5 \%\) & \(10 \%\) & \(14 \%\) & \(18 \%\) \\
1 & \(41 \%\) & \(25 \%\) & \(37 \%\) & \(20 \%\) \\
2 & \(28 \%\) & \(33 \%\) & \(27 \%\) & \(33 \%\) \\
3 & \(8 \%\) & \(6 \%\) & \(8 \%\) & \(16 \%\) \\
4 & \(2 \%\) & \(10 \%\) & \(4 \%\) & \(8 \%\) \\
5 & \(3 \%\) & \(4 \%\) & \(6 \%\) & \(0 \%\) \\
\(6-10\) & \(7 \%\) & \(6 \%\) & \(4 \%\) & \(0 \%\) \\
over 10 & \(6 \%\) & \(6 \%\) & \(0 \%\) & \(4 \%\)
\end{tabular}

The average number of units per respondent was then calculated to each price point yielding the following results:

\footnotetext{
5 "A Cellular Radio Market Study for the Chicago Metropolitan Area," May, 1982; prepared for Rogers Radio; prepared by Compucon Inc., 13749 Neutron Road, Dallas, Texas 75234
}
\begin{tabular}{cc} 
Price & Average Number of \\
Point & Units Per Respondent \\
\(\$ 60\) & 6.49 \\
\(\$ 120\) & 4.90 \\
\(\$ 180\) & 2.04 \\
\(\$ 240\) & 4.24
\end{tabular}

The survey by Compucon was made in a large city and the respondents were business enterprises. While the results cannot be applied directly to thinly populated areas, it seems reasonable to expect that the businesses in non-urban areas would respond in approximately the same way. The survey conducted by Opinion Research Corporation for the Audio Electronics Department of General Electric Company, referenced in Appendix A of this report, was directed at households and thus reflects the private as well as the business and professional markets. Perusal of Table A-12 indicates that the overall response in the ORC survey was very nearly equivalent for the SMSA and non-SMSA respondents.

A combination of price and quality elasticity may be assessed from the ORC survey. One question addressed the price sensitivity of a consumer product that would use a mobile telephone in an automobile to communicate with a unit attached to the home telephone of the user. That unit would in turn connect into the wireline network. For a modest service charge the range of the vehicle would be extended by relaying its signals through a community repeater. The question and response were as follows: "If this product cost (a. \$295), (b. \(\$ 350\) ), (c. \(\$ 450\) ) and the monthly service charge was \(\$ 3.50\), how likely is it that you would purchase this product for one of the vehicles in your household?"
\begin{tabular}{lcccc} 
ESTIMATES OF POTENTIAL MARKET SIZE & AT & THREE & LEVELS OF PR ICING \\
& \(\mathbf{\$ 2 9 5}\) & \(\mathbf{\$ 3 5 0}\) & \(\mathbf{\$ 4 5 0}\) \\
& \(\mathbf{2 5 0 9 )}\) & \(\mathbf{( 2 5 0 9 )}\) & \(\mathbf{( 2 5 0 9 )}\) \\
\begin{tabular}{l} 
Percentage Base
\end{tabular} & & & \\
\begin{tabular}{l} 
Potential Purchasers \\
at Each Price
\end{tabular} & \(\mathbf{6 0 0}\) & 455 & 264 \\
\begin{tabular}{l} 
Potential Purchasers as \\
a Percent of Total Sample
\end{tabular} & \(23.9 \%\) & \(18.1 \%\) & \(10.5 \%\)
\end{tabular}

Another question related to a mobile telephone system with price and performance similar to cellular mobile telephone: "If a much better mobile telephone system were available to you that operated in a much wider range in all directions, and had no limitations on message length and did not require a base station in your home, how likely is it that you would obtain such a system if the cost was \(\$ 750(\$ 1000)\) and the monthly service charge was \(\$ 50.00\) ( \(\$ 75.00\) )? Would you ...?"

LIKELIHOOD OF PURCHASE OF A BETTER, MORE COSTLY MOBILE RADIO TELEPHONE PRODUCT
( \(\$ 750\) Mobile Radio Telephone and \(\$ 50\) Per Month Service Charge)
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
Total \\
Drivers
\end{tabular} & \begin{tabular}{c} 
Acceptors of \\
GE Product
\end{tabular} \\
\cline { 2 - 3 } Percantage Base & \((2509)\) & \((600)\) \\
Intention of Purchase & \(100.0 \%\) a & \(100.0 \%{ }^{b}\) \\
\(\quad\) Definitely purchase & 0.6 & 1.3 \\
\(\quad\) Very likely purchase & 0.9 & 2.0 \\
Possibly purchase & 4.4 & 9.8 \\
\(\quad\) Very likely not purchase & 16.3 & 26.5 \\
\(\quad\) Definitely not purchase & 762 & 58.3 \\
\(\quad\) Don't know/No opinion & 1.5 & 2.0 \\
(a) \(5.9 \%, 149\) respondents & & \\
(b) \(13.1 \%, 79\) respondents & &
\end{tabular}


Figure 4-1. Users' Willingness to Pay to Upgrade System Satisfaction to Excellent (Cumulative by \% of Rural Users)


Figure 4-2. Business and Special Industrial Users' Base Radio Costs (February 1982)

\section*{Section 5}

\section*{DISTANCE DISTRIBUTION OF MOBILE RADIO TRAFFIC}

\subsection*{5.1 POLICE SYSTEMS}
"The results of the ECOsystems survey \({ }^{6}\) indicate that the distance requirements of police mobile radio traffic range from very low (a few kilometers) up to the maximum distance subtended by the corresponding political boundries. Only minimal traffic (of order \(1 \%\) or less) is required to go beyond these boundries.
"The maximum ranges compute out as follows:
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
Average \\
\multicolumn{1}{c}{ Territorial Area } \\
(County or State)
\end{tabular} & \begin{tabular}{c} 
Absolute \\
Range \((\mathrm{km})\)
\end{tabular} \\
Maximum \\
Range (km)
\end{tabular}

By average maximum range is meant the radius of coverage from geographic center to the furthermost territorial boundary. Absolute maximum range designates the longest distance between the furthest territorial boundries."

The requirements for police mobile radio as described above are assumed to be typical of county and state public services including highway maintenance and emergency medical service in rural areas.

Federal agencies require longer distance communication for applications such as law enforcement, illegal immigrant interdiction, and disaster control and relief. Disasters often occur where there are no telephone services. If telephone service is normally available, it may be destoyed by the disaster. If it is not destroyed, the system becomes saturated with calls and is often useless to the disaster relief agencies. The affected area may encompass several states in the region surrounding the disaster. Radio communication with ranges of several hundred to more than 1000 miles is essential in some of the applications.

\subsection*{5.2 SPECIAL INDUSTRIAL RADIO SERVICE}

The Special Industrial Radic Service Association (SIRSA) conducted a survey in December 1977 to obtain information on the usage and performance of its members' mobile radio systems. The report includes the required communication ranges and the achieved ranges of its members. \({ }^{7}\) Tables 6.1 and 6.2 are from the SIRSA report. SIRSA comments: "As expected, those industries that are primarily located in urban areas require shorter communication ranges as compared to those located in rural areas such as the petroleum services, agricultural services and nining industries. For example, \(39.8 \%\) of those engaged in supplying services to the petroleurn industry stated that they require a range of 51 to 75 miles, and \(15.4 \%\) stated that more than 75 miles were necessary.
"Perhaps, more importantly, when these responses were tabulated by SIRSA's staff, it was found that \(23.4 \%\) of the returns noted that more communication coverage was needed than presently achieved. Conversely, only \(8.3 \%\) stated that they were achieving more coverage than they required from their two-way radio systems."

\footnotetext{
\({ }^{6}\) Non-Urban Mobile Radio Demand Forecast, Final Report, June 25, 1982. ECOsystems International, Inc., Page 73.
\({ }^{7} 1978\) Membership Report of the Special Industrial Radio Service Association, page 19.
}

\section*{Section 6}

\section*{RADIO TRAFFIC DEMAND SUMMARY}

This section summarizes the numbers of mobile units and the traffic demands for each of the three market categories. Estimates are made of the radio traffic demand in order to determine the number of communication channels and thus define the size of the systems to meet the demand. Communication traffic is measured in erlangs. As used in the following assessment, an erlang is the traffic that will continuously occupy a voice bandwidth channel.

The channel capacity to handle the traffic is larger than the erlang demand because it must allow additional time on the channels for minimizing blocking of messages. If trunking is used, contol channels are needed in addition to the talking channels.

The ECOsystems study determined that the mean traffic generated by base stations is as follows:
\begin{tabular}{ll} 
Business & 32.135 milli-erlangs \\
Special Industrial & 25.004 milli-erlangs
\end{tabular}

ECOsystems emphasizes that the above values are only for the traffic generated by the base stations. An equal amount of traffic is generated by the mobiles in return; hence the total traffic is double the above. On the average, there are six mobiles per base station. For the purpose of estimating total traffic demand for dispatch services, we assume an average one way demand of 0.028 erlangs per base station, or an average of 0.0093 erlangs of two-way demand per mobile. The values are the average demand generated during the normal working hours of the users.

\subsection*{6.1 OIL AND GAS SERVICES}

The capturable market in the oil and gas well services industry is summarized from Table 2-1.
\begin{tabular}{lrrr}
\multicolumn{4}{c}{ Mobile Units } \\
& \multicolumn{1}{c}{1990} & \(\underline{1995}\) & \(\underline{2000}\) \\
Voice & 35,736 & 41,428 & 48,626 \\
Data & 7,288 & 8,449 & 9,794
\end{tabular}

On the assumption that the average demand for voice communications in the oil and gas well services industry is 0.0093 erlangs per mobile, the peak demand in erlangs is:
\begin{tabular}{cccc}
\multicolumn{4}{c}{ Erlangs (Voice) } \\
& \(\frac{1990}{32}\) & \(\frac{1995}{385}\) & \(\underline{2000}\) \\
Erlangs & 322 &
\end{tabular}

A representative of a major oil and gas well service company stated that each day his company generates well logging data that would require 200 hours of transmission time at 4800 bits per second. He estimated that that is \(15 \%\) of the total amount of logging data that is generated by the industry in the contiguous states and the Gulf of Mexico. Other industry representatives have indicated that new instrurientation will greatly increase, perhaps by an order of magnitude, the amount of data per wel site as the technology develops over the next decades.

Based on the assumption that the increase in demand will only follow the increase in the number of mobile service vans, the number of voice channel equivalent erlangs will be:
\begin{tabular}{ccc}
\multicolumn{3}{c}{ Erlangs (Data) } \\
& \(\frac{1990}{111}\) & \(\frac{1995}{128.8}\) \\
Erlangs & \(\frac{2000}{149.4}\)
\end{tabular}

While the total demand for the data transmission is not large, the economic value of its transmission is emphasized by the industry representatives. One company is now offering the service through a domestic satellite for a \(\$ 2400\) setup charge and \(\$ 800\) per day.

\subsection*{6.2 TRUCKING INDUSTRY}

The capturable market for the trucking industry as described in Section 2 is considered to be only the common and contract carriers on intercity irregular routes. Many other trucks may use a long range mobile radio service also, but the analysis is restricted to the portion of the industry whose represetatives have expressed a definite need. The desired functions are position surveillance of trailers, automatic data transmission from trailers, and communications with drivers. The numbers of mobiles in the market segment are summarized from \(\mathbf{T a}\) ble 2-2.
\begin{tabular}{lrrr} 
& \multicolumn{3}{c}{ Mobile Units } \\
& \(\underline{1990}\) & \(\underline{1995}\) & \(\underline{2000}\) \\
Trailers & 168,439 & 185,970 & 205,326 \\
Tractors & 86,900 & \(\mathbf{9 5 , 9 4 5}\) & 105,931
\end{tabular}

Voice or voice equivalent (alphanumeric) communications with the drivers will replace the long distance wireline calls that are now used for dispatching trucks. The average dispatch traffic demand per vehicle, 0.0093 erlangs, is assumed to apply to the trucking industry.
\begin{tabular}{cccc}
\multicolumn{3}{c}{ Erlangs (Voice) } \\
& \(\frac{1990}{}\) & \(\underline{1995}\) & \(\underline{2000}\) \\
Erlangs & 808 & 892 & 985
\end{tabular}

The position fixing and low data rate communications will require short and infrequent messages from each trailer. A position fix can be accomplished in one second. Each status message will require only a fraction of a second transmission time at voice bandwidth rates. Guard time in the channels must be allowed because of the messages are transmitted at random times from the trailers. Messages are desired from many trailers when they are not attached to tractors because their status and load conditions are to be monitored. We assume five seconds of transmission per day from each trailer, or .00006 erlangs.
\begin{tabular}{cccc}
\multicolumn{4}{c}{ Erlangs (Data) } \\
& \(\frac{1990}{}\) & \(\frac{1995}{10.8}\) & \(\underline{2000}\) \\
Erlangs & 9.7 & 11.9
\end{tabular}

The attractivness of the position surveillance and data transmission will depend upon the cost of the units for the trailers. The cost of the functions will be low because a very large number of units can be accommodated in one voice channel. If the equipment cost is low, a few hundreds of dollars, it is likely that i ery much larger portion of the nation's four million trailers will use the service.

\subsection*{6.3 COMMERCIAL AND PUBLIC SERVICES}

Commercial and public radio services use voice in the dispatch mode of communications almost exclusively. The addressable market is summarized from Table 2-3.

\section*{Mobile Units}
\begin{tabular}{lrrr} 
& \multicolumn{1}{c}{1990} & \multicolumn{1}{c}{1995} & \multicolumn{1}{c}{ 2000 } \\
Conservative & 111,339 & 156,159 & 219,021 \\
Likely & 440,412 & 709,288 & \(1,142,315\) \\
Optimistic & 975,953 & \(1,571,792\) & \(2,531,371\)
\end{tabular}

The predicted traffic demand in erlangs for commercial and public radio to satisfy nonurban needs for longer range and better coverage is:
\begin{tabular}{lllr} 
& \multicolumn{3}{c}{ Erlangs } \\
& \(\underline{1990}\) & \(\underline{1995}\) & \(\underline{2000}\) \\
& \(\underline{1,035}\) & 1,452 & 2,036 \\
Conservative & 1,596 & 10,623 \\
Likely & 4,095 & 6,5917 & 23,541
\end{tabular}

\subsection*{6.4 MOBILE RADIO TELEPHONE}

ECOsystems reports that the FCC sampled some 50 common carriers widely distributed throughout the United States and determined that the average mobile radio telephone generates .014 milli-erlangs of traffic. The number must be multiplied by two, since radio telephone service requires duplexing. The mobile traffic is thus .028 erlangs per subscriber. The addressable mobile radio telephone market is summarized from Table 2-4:
\begin{tabular}{lrrr}
\multicolumn{4}{c}{ Mobile Telephone Subscribers } \\
& \(\underline{1990}\) & \(\underline{1995}\) & \(\underline{2000}\) \\
& \multicolumn{4}{c}{} & \(\underline{65,833}\) & 84,021 \\
Conservative & 51,582 & \(\underline{65,85}\) \\
Likely & 216,895 & 304,206 & 426,655 \\
Optimistic & 287,810 & 463,521 & 650,112
\end{tabular}

Applying the estimate of .028 erlangs per subscriber to the above, the demand in erlangs is as follows:
\begin{tabular}{lrrr} 
& \multicolumn{3}{l}{ Erlangs } \\
& \(\underline{1990}\) & \(\underline{1995}\) & \(\underline{2000}\) \\
& \(\underline{1,444}\) & 1,843 & 2,352 \\
Conservative & \(\mathbf{1 , 0 7 3}\) & 8,517 & 11,946 \\
Likely & \(\mathbf{6 , 0 5 9}\) & 12,978 & 18,203
\end{tabular}

\subsection*{6.5 DEMAND TOTALS}

The sums of the traffic demands in erlangs are:
\begin{tabular}{lrrr} 
& \multicolumn{1}{c}{1990} & & \multicolumn{1}{c}{1995} \\
& \multicolumn{1}{c}{0000} \\
Conservative & 3,730 & 4,712 & 5,986 \\
Likely & 11,419 & 16,530 & 24,168 \\
Optimistic & 18,387 & 29,012 & 43,342
\end{tabular}

\section*{Section 7}

\section*{MOBILE RADIO SERVICES IN ALASKA AND HAWAII}

The populations of Alaska and Hawaii are small compared to the total population of the contiguous slates. The mobile radio demand that they add to the total is not sufficient to seriously impact the size or capacity of a system with a national architecture. It is not fruitful to altempt more than an approximation of the total numbers of mobiles or the demand in erlangs. The separation of the two states from the others, the separation or isolation of communities within the two states, and the unique geographical characteristics of each of them present requirements that are quite different from those of systems within the contiguous states.

\subsection*{7.1 ALASKAN REQUIREMENTS}

The large area of Alaska, its small and dispersed population, and its economic importance present commmunication challenges which are different from those of the contiguous states. Alaska has a land area of 591,004 square miles and a population of 401,851 persons. It has one Standard Metropolitan Statistical Area, Anchorage, with a population of 174,431 persons and an area of 1699 square iniles. Fairbanks, population 22,645, and Juneau, 19,528, are the only other cities in the state with a population in excess of 10,000 persons. The state has many small, widely separated communities.

Present mobile telephone service in Alaska is of the IMTS type (Improved Mobile Telephone Service). All of the installations operate in the 150 MHz band. Radio Common Carriers have systems in Fairbanks, Anchorage, and Juneau. One system in Kenai (population 4,324 ) is operated by a Bell System company.

No suivey of mobile radio usage in Alaska was attempted. Estimates of demand are based on extrapolations of use in the contiguous states. Gross estimates of demand for Alaska are sufficient for the purposes of this study because the number of units is small compared to the demand in the contiguous states and thus the Alaska estimates can have only a small effect on total system demand. More important than the numbers of units are the economic and societal needs for better, especially longer range, mobile communictions in the thinly populated, mountainous state.

Estimates of the numbers of commercial and public radio sets in the contiguous states range between seven and ten million, or \(3.1 \%\) to \(4.4 \%\) of the population. The SIRSA membership report referenced in Section 2 revealed that approximately \(23 \%\) of the non-urban commercial and public radio users required additional coverage and range. If those factors apply to Alaska, the estimated number of commercial and public radio mobiles that would benefit from improved dispatch-type mobile services is about 3700 . We estimate they would generate about 35 erlangs demand.

If a mobile radio telephone service were implemented in Alaska with no limit of range so that subscribers could have about the same quality of service that will be enjoyed by urban users of cellular systems, it is reasonable to expect that the market penetration would reach at least the one percent of the population that is estimated for the urban systems. In the Province of Alberta, which has a mobile telephone service available over 75 percent of its land area, the number of mobiles at the end of 1980 was \(1.4 \%\) of the population. The number had been growing at \(25 \%\) per annum for the previous seven years. Alaska may have many characteristics similar to Alberta. Both have large areas, much of which are thinly populated, and both have important energy resources with incieasing exploitation activity. Based on one percent penetration, the number of subscribers in Alaska would be 4018. Radio traffic demand would be about 113 erlangs.

Alsaka shares in the need for new mobile se: vices as well as for commercial and public radio and radio telephone. The state's energy, mineral, fisheries, and forestry industries would benefil from data communications and position surveillance functions if they were available. The geographical dispersion of ine resources and the state's population require that the communications ha: : long-range capability. A radio equipped vehicle should be able to communicate with a "home" base as it travels in its local area. It is also important that it be able to communicate over the long inter-community distances. Long distance communications are important to the fisheries industry as well as the land-based industries. High-frequency radio (2-30 MHz), the only presently availabe long-range mobile radio means, is frequently degraded by ionosjheric disturbances in the Alaskan latitudes.

Specific needs for non-urban mobiie comnitications in Alaska include:
- Dispatch and mobile telephone service in the local areas surrounding many small communities.
- Dispatch and mobile telephone service between vehicles and their home communities when they travel beyond local areas.
- Mobile and rural radio telephone service between widely separated communities including calls to major cities and to lecations in the contiguous states.
- Dispatch communications and position surveillance for transportation services including trucks, trains, large and small aircraft, inland and coastal vessels.
- Data communications from energy and mineral exploration and exploitation sites to data processing centers in Alaskan cities and the contiguous states.
- Data communications from remote communities and settlements to medical and law enforcement centers in Alaskan cities and the contiguous states.
- Access from remote communities to information and data banks in Alaskan cities and in the contiguous states for educational purposes.

The needs listed above do not make a clear distinction between mobile radio and some fixed services. For small and isolated communities the communications equipment costs and service charges must be typical of mobile radio rather th. \(\eta\) of fixed services that require large eennas, costly equipment, and high service charges.

\subsection*{7.2 HAWAIIAN REQUIREMENTS}

Hawaii differs from Alaska ist total land area, but is similar in the total geographic area occupied by the state. The land area of Hawaii is 6471 square miles; its population is 964,691 . Eight major islands extend westward about 400 miles from 155 degrees west longitude, and smaller islands in the chain continue on almost to the international dateline. In that long extent, the state has 12 cities that exceed 10,000 population. As in Alaska, there are separated, isolated communities.

Mobile radio telephone service of the IMTS type is provided by Radio Common Carriers in Hilo (population 35,029), Honolulu (City, 365,048; SMSA 762,874), Kaneohe (29,919), and on the island of Maui. Bell companies serve Hilo, Lihue (4000), and the island of Kauai.

The 150 MHz band seems the best available choice for terrestrial systems because of the mountainous terrain. Only in the largest cities, perhaps only Honolulu, would an 800 MHz cellular system be applicable. Inter-island communication and communication with the contiguous states must depend on HF radio ( \(2-30 \mathrm{MHz}\) ), cable, and satellite. At the present time only HF radio is useful for inter-island mobile radio, and that mode is not reliable. Most re-
quirements for inter-island mobile radio are for ocean vessels and aircraft that are enroute.
The needs for mobile radio in Hawaii are similar to those listed for Alaska. The total demand in Hawaii may be larger than that of Alaska in approximate proportion to its population.

\section*{STATISTICAL ANALYSIS OF POTENTIAL MAREETS AND THEIR GEOGRAPHICAL DISTRIBUTION}

An important aspect of the potential markets is their geographical distributions throughout the contiguous United States. Ancillary data and correlational methods were ueed to obtain the distributions for the baseline (current) markets for the three segments. The three segments were chosen to be essentially independent for the current markets and to remain so.

The prediction of a future distribution requires a forecast of the ancillary cata. The forecast of anciliary data coupled with the assumption that the predictive relationships remain constant over time allows forecasts of the distributed market to be made. Thus the analysis of the distributed market follows a cross-sectional econometric approach.

The cross-sectional approach differs from the one taken in determining the total market for the entire contiguous states for the three segments and the forecasts to the year 2000 as described in Section 1.2. The two approaches need not give identical results. Each has its advantages and disadvantages. A cross-sectional approach has the advantage of indicating relationships within a market (the basis for the market distribution) and can be the first step in determining cause and effect relationships. It has the disadvantage of requiring forecasts of the ancillary data in order to :...ake market forecasts. The approach taken in Section 1.2 has the advantage that it is self contained and, hence, any aualyses are simple and straightforward. However, it h..s no way of anticipating changes in growth rates or more importantly if a growth model continues to hold. By taking the two approaches we get two different views of the overall market.

Summaries of the distributions for the three market segments follow.

\section*{Distribution of the Commercia! and Public Services Market}

The fundamental data eniployed for the Commercial and Public Radio marke: analysis are derated counts for business and special industrial licenses in a set of sampled counties taken from a study performed by ECOsystems. \({ }^{1}\) The counts for business and special industrial licensees were obtained direcily from FCC records. The derating factor, defined by the FCC, corrects for frequency compounding and for users with more ihan one base station. Thus the derated counts represent the number of business and special industrial users of mobile radio. (See page 7 of the cited ECOsystems report for a further discussion of the derating factor.)

We also employed the results of a traffic survey made of the business and special industrial users in an initial sample of 13 users in a two-stage sampling scheme employed by ECOsystems. The survey com:prised 77 business radio users and 32 special industrial radio users. The estimated mean milli-erlang demand for a business user is \(2474.4 / 77=32.135\) millierlangs and the corresponding estimated mean for special industrial users is \(800.14 / 32=\) 25.004 milli-erlangs. The estimates are oblained from data given in Tables 6 and 7 of the ECOsystems study. \({ }^{2}\) The estimated means were multiplied by a factor of 2 because the erlang usages were on a orie way basis. \({ }^{3}\) It is assumed that the sum of the lengths of the average mobile messages associated with a base station is equal to the message transmission time of the base station. The assumption appears reasonable when complete iransactions are con-

\footnotetext{
' Non-Urban Mobile Radio Demand Forecast, Final Report, June 15, 1982, ECOsystems International, Inc., Table 8, page 26
\({ }^{2}\) Op. cit.
\({ }^{3} \mathrm{Op}\). Cit. page 22
}
sidered. An initial message from a base is frequently longer than the initial mobile response. Succeeding mobile responses to the initial base station message are frequently longer than the corresponding base station response. The total demand is larger by some factor than the demand given in the ECOsystems study, and a factor of 2 is taken as the most likely.

The ECOsystems sampling was cart, \({ }^{\circ} \mathrm{d}\) out in two stages because ECOsystems found no significant correlations \({ }^{4}\) between erlang demand and available demographic data in the first sampie. The initial sample consisted of 20 counties selected at random from the non-SMSA counties in the contiguous United States (CONUS). The second stage consisted of an additional 53 counties selected at random from non-SMSA CONUS counties. The total sample was used in our modeling process with the assumption that erlang demand is independent of an individual user selected at random. Since correlational models were developed only for the number of users within a county the sample remains a valid random sample.

The assumption is consistent with the ECOsystems findings and implies a compound distribution as a possible fundamental model. Compound distributions are widely used as models in situations analagous to this one. It is assumed that a random process generates the number of users in a given county and the demand for a particular user is given by a nonnegative distribution. It is further assumed that the process that generates the users is independent of the process that generates the demand. An estimate of the mean demand for any county is obtained by multiplying the average demand per user times the estimated number of users in the county.

The first step in the procedure is to obtain estimates of the number of users for those counties that were not sampled. We employed demographic and economic data compiled on a county basis and published in the County and City Data Book. \({ }^{5}\) The data are available on tape, and the tape version was used in the study. The data consist of statistical compilations for regions, divisions, states, counties, metropolitan areas, and cities.

County data are given under the general categories of: Population and Area, Vital Statistics, Labor Force, Employment, School Enrollment, Health, Income, Public Assistance and Social Security, Banking, Housing, Local Government Finances, Government Employment, Elections, Crime and Police, Manufacturers, Wholesale Trade, Retail Trade, Selected Services, Mineral Industries, Farm Population, and Agriculture. Ir all there are 195 individual data entries for each county.

From these 195 entries we sought to develop regression equations that would ascertain the number of mobile radio users in any given county. We were confronted with two conflicting objectives in the selection of an equation.
- To enhance the usefulness of the prediction the equation must include as many of the demographic and economic predictor variables as possible.
- Anc!jeis with a large number of variables would be prohibitive in cost, and a large number of predictor variables generally results in a singularity in the regression equations.

It was necessary to make a sensible selection of initial variables and put the selection to a critical examination and analysis.

\footnotetext{
\({ }^{4}\) Op. Cit. Page 22
\({ }^{5}\) County and City Data Book 1977, U.S. Bureau of the Census, U.S. Department of Commerce.
}

The final model selection procedure employed stepwise regression. This is a widely used procedure that attempts to make the best of the opposing aims just discussed. An excelient discussion of the method and comparison with other methods is given in Draper and Smith. \({ }^{6}\)

To begir, a small number of variables was studied in a usual regression analysis. Two things were discovered: the development of a "good" predictor would probably be difficult, and care would have to be exercised in selecting predictor variables from the 195 choices because not all variables are reported for all counties. An attempt was made to cover all factors that could contribute to the market. Of the general categories it was believed that population and area, employment, banking, manufacturers, wholesale trade, retail trade, selected services, mineral industries, farm population, and agriculture should be correlated with the business and special industrial users.

For the retail trade and selected services categories only certain totals, e.g., the number of establishments, are reported for all counties. Indeed even total receipts of all establishments for the selected services has missing data for Oliver, N. D., one of the sampled counties. Since these totals should be highly correlated with population and other variables we wish to include in the regression model we have included none of these totals in the analysis. Thus there are no direct representatives of retail trade and selected services in the model. The farm population category was also omitted because it is based on 1970 census data. Thus seven categories remained. One variable was selected from each category giving a total of seven predictor variables for the regression study.

The seven variables selected are total population as of July 1975 (item 3), total annual payroll for 1975 (item 36), total bank deposits for 1976 (item 65), manufacturing establishments with 20 or more employees from the 1972 Census of Manufacturers (item 110 x item \(111 / 100\) ), total wholesale trade establishments from the 1972 Census of Wholesale Trade (item 122), all mineral establishments (e.g., coal and ores, petroleum, gases, etc. and all related operations such as mining, drilling, quarrying, well operation, etc.) from the 1972 Census of Mineral Industries (item 162), and number of farms of 1000 acres and over from the 1974 Census of Agriculture (item 184).

In some cases other representative variables were investigated but were discarded either because there were missing data or because the included variable correlated better with the user counts. Table A-1 shows part of the output from the first ster of the stepwise regression procedure for the regression of the business counts on the seven predictor variables. \({ }^{7}\) Similar data are shown in Table A-2 for the regression involving the special industrial counts. The current error mean square is that associated with the fit of all seven variables shown in the two tables in their respective models. The incremental \(F\)-ratio is also the partial \(F\) and is the square of the partial \(t\). The partial \(t\) is the test statistic reported in standard regression routines for testing the statistical significance of an independent (predictor) variable. The new mean square error is associated with the model that has the respective variable omitted. The variance inflation factor (VIF) is a measure of the near singularity of a model with all seven variables. An individual VIF is given by by \(1 /\left(1-R_{i}{ }^{2}\right)\) where \(R_{i}\) is the multiple correlation of the \(i^{\prime \prime}\) predictor variable with all other predictor variables.

Since the VIFs involve only the predictor variables, the two sets of VIFs are identical. Solving for the \(R_{i}{ }^{2}\) associated with payroll results in a value of 0.95585 , so that about \(95.6 \%\) of the variation of the payroll variable can be explained in a regression of payroll on the other

\footnotetext{
\({ }^{6}\) Applied Regression Analysis, 2nd Edition, N. Draper and H. Smith (1981), John Wiley and Sons, Inc., New York
\({ }^{7}\) The stepwise procedure employed STATPAC, a computer program developed at the General Electric Research and Deveiopinent Center.
}

\section*{Table A-1}

FIRST STEP OUTPUT - REGRESSION OF BUSINESS COUNTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\(\left[\begin{array}{l}\text { "Step No. } 1 \\ \text { Test to Remove Old Variable } \\ \text { Current Error Mean Square: } 749.1872\end{array}\right.\)} \\
\hline Var &  & \begin{tabular}{l}
nental \\
F-Ratio
\end{tabular} & \[
x_{1} \mathrm{Pt} \text { of }
\]
F-Dist & New Error Mean Square & Incremental Error Mean Sq & Variance Inflation Factor \\
\hline Manul & 0.1273 & 2.7082 & 89.53 & 768.5778 & 19.39053 & 6.934474 \\
\hline Bank & 0.0686 & 0.7880 & 62.14 & 746.7577 & -2.429520 & 10.11495 \\
\hline Payrol & 0.1394 & 3.2687 & 92.48 & 774.9395 & 25.75231 & 22.65082 \\
\hline Minera & 0.2347 & 9.2042 & 99.65 & 842.3157 & 93.12843 & 1.724372 \\
\hline Popl 2 & 0.0392 & 0.2568 & 38.60 & 740.7515 & -8.435753 & 14.83945 \\
\hline Farms & 0.0175 & 0.0512 & 17.84 & 738.4174 & -10.76980 & 1.455983 \\
\hline Wholes & 0.2300 & 8.8423 & 99.59 & 838.2081 & 89.02087 & 5.868052 \\
\hline
\end{tabular}
*Removed larms 5.0000 is the specified value for deleting a variable.

Table A-2
FIRST STEP OUTPUT - REGRESSION OF INDUSTRIAL COUNTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{-Step No. 1} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Test io Remove Old Variable Current Error Mean Square: 95.68788}} \\
\hline & & & & & & \\
\hline Var & \[
\begin{aligned}
& \text { Incre } \\
& \text { Corr }
\end{aligned}
\] & mental F-Ratio & \% Pt of F-Dist & New Error Mean Square & Incremental Error Mean Sq & Variance inflation Factor \\
\hline Mamul & 00165 & 0010588 & 19.09 & 94.32339 & -1.364497 & 6.9?4474 \\
\hline Ballk & 0.0749 & 1.2640 & 73.50 & 96.07059 & 0.3827066 & 10.11495 \\
\hline Payrol & 0.0970 & 2.1172 & 84.95 & 97.30758 & 1.619699 & 22.65082 \\
\hline Minera & 0.3068 & 21.1783 & 100.00 & 124.9427 & 29.25485 & 1.724372 \\
\hline Pop2 & 0.0211 & 0.1004 & 24.76 & 94.38356 & -1.304325 & 14.83945 \\
\hline Farms & 0.3032 & 20.6848 & 100.00 & 124.2272 & 28.53932 & 1.455983 \\
\hline Whules & 0.2234 & 11.2366 & 99.87 & 110.5291 & 14.84119 & 5.868052 \\
\hline
\end{tabular}
\({ }^{*}\) Removed Manul' 5.0000 is the specified value for deleting a variable.
predictor variables. A value of 10 for a VIF or \(R_{i}{ }^{2}\) of \(C=0\) is considered to be large by many analysts. \({ }^{\text {(8) }}\)

Thus the VIFs indicate the presence of some linear relationships among the predictor variables. This is not unusual for this type of study. Since the program employed uses Gaussian elimination in double precision with pivoting, this amount of linear correlation does not unduly affect the matrix inversion required in estimating the model parameters and performing the analysis. Careful selection of the predictor variables avoided extreme correlation. Unforlunately, the most important predictor may have been missed in so doing, but there is no guarantee it was in the data given in the County and City Data Book.

In a further investigation of the correlation amon: the predictor variables the correlation matrix of the variables was obtained as shown in Table A-3. Inspection of that table indicates why the payroll variable has a VIF of 22.65 as well as the nature of the other VIFs. Payroll is reasonably correlated with the variables for manufaccuring, banking, population, and wholesale trade. Moreover, the population variable is reasnnably correlated with the variables for manufacturing, banking, payroll, and wholesale tiaie. Also the variables for minerals and farms are reasonably uncorrelated with each oti.er and all the other variables. Perhaps the most striking feature in Table A-3 is the fac! that certain predictor variables are better correlated with each other than with the business (?USIN) and special industrial (INDUS) counts.

Finally, Tables A-1 and A-2 show the vaue of the \(F\) to remove (5.0). In addition a value of 6.0 was employed for the \(F\) to enter. These values are somewhat larger than the usual values and are chosen to allow for a simultaneous inference. This procedure is discussed at some length in the Draper and Sinith reference in Chapter 6. The stepwise procedure was begun with all variables in the model. A check was then made to see if any variable could be removed. If not, the procedure would stop. For the business model, the farms variable was removed at the first step, and similarly for the special industrial model the manufacturing variable was removed. Before a step was completed all previously removed variables were checked to see if any could enter. The most promising was entered if it passed the enter test. For the first step the variables just removed were not entered. (We have \(F\) enter \(>F\) remove for this reason; see the Draper and Smith reference.) The process continued until no further model changes could be made.

Table A-4 shows part of the output for the last step of the stepwise procedure for the regression study of the business counts. Similar data are shown in Table A-5 for the regression stidy involving the special industrial counts. The results are quite interesting. For the business model the predictor variables are the mineral and wholesale trade variables. The partial correlations are of the order of the original correlations shown in Table A-3. The mean square error is 739.36 as opposed to the original value of 749.19 . The multiple correlation coefficient is 0.766 with an index of determination ( \(R^{2}\) ) of \(58.7 \%\). The corresponding initial values were 0.782 and \(61.1 \%\). Thus the final model has almost the same predictive ability as the original model. We also note that the intercept term is not statistically significant at a level of confidence of \(95 \%\) and for predictive purposes could possibly be omitted. However, we did not do so.

For the special industrial model the predictor variables are the mineral, wholesale trade, and farm variables. Essentially the same results that held for the business situation hold here. However, the final mean square error is increased over the initial mean square error and the predictive ability appears to be better than that for the business situation. Again the intercept term is not significant at the \(95 \%\) level but again the full model was employed. As a

\footnotetext{
8 "Some Aspects of Nonorthogonal Data Analysis, Part I" (1973), R. D. Snee, Journal of Quality Technology, 5, 67-79.
}

Table A-3
CORRELATION MATRIX OF THE VARIABLES
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & Manuf & Bank & Payrol & Minera \\
\hline Manul' & 1.0000000 & & & \\
\hline Bank & 0.7530289 & 1.000000 & & \\
\hline Payrol & 0.8725226 & 0.9242528 & 1.000000 & \\
\hline Mincra & -0.4568016E-01 & 0.1709728 & 0.2210834 & 1.000000 \\
\hline Pop2 & 0.8575606 & 0.9012138 & 0.9377864 & 0.9:08305E-01 \\
\hline Farms & -0.30\%6322 & \(-0.7431560 \mathrm{E}-01\) & -0.1768661 & 0.2014275 \\
\hline Wholes & 0.6457256 & 0.8452297 & 0.8063513 & 0.2501952 \\
\hline Busin & 0.2909841 & 0.5306697 & 0.5436417 & 0.5633043 \\
\hline Indus & 0.2173732E-01 & 0.3521209 & 0.2586185 & 0.5599663 \\
\hline Variable & Pop & Farms & Wholes & \begin{tabular}{l}
Busin \\
Indus
\end{tabular} \\
\hline Pop & 1.000000 & & & \\
\hline Farms & -0.1977446 & 1.0000000 & & \\
\hline Wholes & 0.8504550 & 0.9623977E-01 & 1.000000 & \\
\hline Busin & 0.4869440 & 0.1689862 & 0.6438529 & 1.0000000 \\
\hline Indus & 0.2514111 & 0.5600564 & 0.5481682 & 1.000000 \\
\hline
\end{tabular}
consequence for some counties negative, but small, counts are predicted. In this case we set the predicted value to zero. This will produce results that are not too different from a reestimated model with no intercept term.

In summary, the equations shown in Tables A-4 and A-5 were employed in predicting the number of users for each county in CONUS outside the 73 in the sample drawn by ECOsystems. For those we employed the observed data.

Inspection of the equations indicates that they are plausible. Business licenser can come from all areas of business and industry, while the special industrial licenses are restricted to seven general categories, the largest two of which involve agricultural endeavors. Apparently wholesale trade is a good indicator of general business and industry usage of mobile radio and the mineral variable improves the predictions. The strong agricultural bent of the special industrial licensees shows up in the farm variable being additionally included in this regression.

As a further test of the predictive ability of the two equations an additional set of ten counties was selected (but not at random) and the predicted values were compared to the observed values. \({ }^{9}\) With the exception of one, these counties were selected from the borders of the states in CONUS or at places where large mobile radio activity was suspected. In this latter category are the three counties in California, one county in lowa, and two counties in Ohio (one of which is an SMSA as of 1977). The one county in Mississippi (and possibly the border counties in Minnesota, North Carolina, and Texas) can be considered to be selected randomly. The observed data with summary statistics are shown in Table A-6.

\footnotetext{
\({ }^{4}\) This additional data was compiled by ECOsystems but is not reported in the referenced study.
}

LAST STEP OUTPUT - REGRESSION OF BUSINESS COUNTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Variables in the Equation: Minera Wholes} \\
\hline \multicolumn{6}{|l|}{Partial Correlations} \\
\hline Variable & Minera & \multicolumn{4}{|l|}{Wholes} \\
\hline Busin & 0.5429370 & \multicolumn{4}{|l|}{0.6286689} \\
\hline \multicolumn{6}{|l|}{*Least Squares Estimate of the Fitted Equation} \\
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
\text { Mcan }= & 3.461782 \\
& +(0.4506807)^{\circ} \text { Minera } \\
& +(0.6059895)^{*} \text { Wholes }
\end{aligned}
\]} \\
\hline \multicolumn{6}{|l|}{Std Dev \(=27.17275\)} \\
\hline \multicolumn{6}{|l|}{Least Squares Estimates of Coefficients with 95\% Confidence Limits} \\
\hline Var & Coeff & Estimate & Lower Limit & Upper Limit & Standard Error \\
\hline Intr & C00000 & 3.461782 & -6.152214 & 13.07578 & 4.820405 \\
\hline Minera & C00004 & 0.4506807 & 0.2845106 & 0.6168508 & 0.8331680E-01 \\
\hline \multirow[t]{4}{*}{Wholes} & C00007 & 0.6059895 & 0.4272949 & 0.7846842 & 0.8959653E-01 \\
\hline & & Coefficient & \multicolumn{3}{|l|}{Variance Inflation Factor} \\
\hline & Minera & C00004 & \multicolumn{3}{|c|}{1.066778} \\
\hline & Wholes & C00007 & \multicolumn{3}{|c|}{1.066778} \\
\hline \multicolumn{6}{|l|}{*Analysis of Variance} \\
\hline Source & D.F. & Surit of Sq's & \multicolumn{3}{|l|}{Mean Sq} \\
\hline Regression & 2 & 73498.85 & \multicolumn{3}{|l|}{36749.42} \\
\hline Error & 70 & 51685.07 & \multicolumn{3}{|l|}{738.3582} \\
\hline Total & 72 & \multicolumn{4}{|l|}{125183.9} \\
\hline \multicolumn{6}{|l|}{F-Ratio \(=49.77181\)} \\
\hline \multicolumn{6}{|l|}{The significance level of this F-Ratio is less than \(0.001 \%\) which is the probability of a larger \(\mathbf{F}\) value if the true regression coefficients are all zero.} \\
\hline \multicolumn{6}{|l|}{- Other Statistics on the Fit} \\
\hline \multicolumn{6}{|l|}{Standard Deviation about the Equation \(=27.17275\)} \\
\hline \multicolumn{6}{|l|}{Multiple Correlation Coefficient \(=0.7662421\)} \\
\hline \multicolumn{6}{|l|}{Index of Determination \(=58.712690 \%\)} \\
\hline \multicolumn{6}{|l|}{Maximum Log Likelihood \(=-344.6442\)} \\
\hline
\end{tabular}

The mean, standard deviation, and variance of the sample of 73 counties are 35.79, 41.697 and 1738.6 respectively for the business counts and \(15.27 \quad 17.295\), and 299.12 respectively for the special industrial counts. The largest count for business is 279 and there are only five counties with counts above 100 . The largest count for special industry is 95 and there are five counties with counts above 40.

If we compare these data with those presented in Table A-6 it does not appear that the ten selected \(c_{\text {cisties }}\) are chosen at random from the county population (or from the same population as was the sample of 73). This is not unexpected in view of the way the 10 test counties were selected. The data for the test counties for business counts appear to be skewed to values that are on the average considerably larger than those of the original sample, while almost the opposite is true for the special industrial counts. However, in the case of the indus-

\section*{Table A-5}

\section*{LAST STEP OUTPUT - REGRESSION OF INDUSTRIAL COUNTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Variahles in the liquation Mincra farms Wholes} \\
\hline \multicolumn{6}{|l|}{Pirtial Corretations} \\
\hline Viariabic & Minera & Farms & Wholes & & \\
\hline Indus & 0.5260922 & 0.6123070 & 0.5784038 & & \\
\hline \multicolumn{6}{|l|}{*Least Squares Estimate of the Fitted Equation} \\
\hline \multicolumn{6}{|l|}{Mean \(=-1.980313\)} \\
\hline \multicolumn{6}{|c|}{+(0.1597106 )*Minera} \\
\hline \multicolumn{6}{|c|}{+(0.9780157F-01)*Farms} \\
\hline & . 1937172 & J*Wholes & & & \\
\hline \multicolumn{6}{|l|}{Sid Dev \(=9.963323\)} \\
\hline \multicolumn{6}{|l|}{L.east Squares Estimates of Coefficients with 95\% Confidence Limits} \\
\hline Var & Cocff & Estimate & Lower Limil & Upper Limil & Standard Error \\
\hline Intr & C0000) & \(-1.980313\) & -5.918824 & 1.958199 & 1.974245 \\
\hline Minera & COOXOO4 & 0.1597106 & 0.9770720E-01 & 0.2217141 & \(0.3108026 \mathrm{E}-01\) \\
\hline Farms & comors & 0.97801571 -01 & 0.6747307 E .01 & 0.1281501 & \(0.1520267 \mathrm{E}-01\) \\
\hline \multirow[t]{5}{*}{Wholes} & C00007 & 0.1937172 & 0.1281026 & 0.2593319 & 0.3289046E-01 \\
\hline & Var & Coefficient & \multicolumn{3}{|l|}{Variance Inflation Factor} \\
\hline & Minera & C00004 & \multicolumn{3}{|l|}{1.104172} \\
\hline & Farms & C00006 & \multicolumn{3}{|l|}{1.044730} \\
\hline & Wholes & C00007 & \multicolumn{3}{|l|}{1.069276} \\
\hline \multicolumn{6}{|l|}{* Analysis of Variance} \\
\hline Source & D.F. & Sum of Sq's & \multicolumn{3}{|l|}{Mean Sq} \\
\hline Regression & 3 & 14687.04 & \multicolumn{3}{|l|}{4895.681} \\
\hline İror & 69 & 6849.479 & \multicolumn{3}{|l|}{99.26781} \\
\hline \multicolumn{6}{|l|}{\(\begin{array}{lll}\text { Total } & 72 & 21536.52\end{array}\)} \\
\hline \multicolumn{6}{|l|}{\(1-\) Ratio \(=49.31791\)} \\
\hline \multicolumn{6}{|l|}{The significance level of this \(\mathbf{F}\)-Ratio is less than \(0.001^{1 \%}\) which is the probability of a larger \(F\) value if the true regression coefficients are all zero.} \\
\hline \multicolumn{6}{|l|}{*Other Statistics on the Fit} \\
\hline \multicolumn{6}{|l|}{Standard Deviation about the R.quation \(=9.963323\)} \\
\hline \multicolumn{6}{|l|}{Multiple Correlation Coefficient \(=0.8258086\)} \\
\hline \multicolumn{6}{|l|}{Index of Determination \(=68.195983 \%\)} \\
\hline \multicolumn{6}{|l|}{Maximum Log L \({ }^{\text {kelihood }=-271.030}\)} \\
\hline
\end{tabular}
trial counts the overall differences between the two sets of data are much less than in the case of the business counts. Also the special industrial counts for the test counties are much more clustered to smaller values than those for the original sample. This is somewhat unexpected in view of the fact that possibly six of the test counties were in locations where one might anticipate large mobile radio activity. In any event the test data obtained are the only data available for model validation.

Table A-7 shows the business and predicted business counts, and Table A-8 shows the same data for the special industrial counts. The \(P\) indicates a predicted value. Overall the pre-

\section*{Table A. 6}

TEST COUNTY DATA
\begin{tabular}{|l|cc|c|c|}
\hline & \multicolumn{2}{|c|}{ Business } & \multicolumn{2}{c|}{ Special Industrial } \\
\cline { 2 - 5 } & \multicolumn{2}{|c|}{ Derated*} & & Derated* \\
\hline County & 308 & 244 & 21 & 19 \\
\hline Butte, CA & 144 & 12 & 11 \\
Nevada, CA & 144 & 114 & 43 & 39 \\
Imperial, CA & 339 & 269 & 19 & 17 \\
Beaufort, NC & 35 & 23 & 27 & 25 \\
Richland, OH & 88 & 70 & 35 & 32 \\
Crawford, OH & 76 & 60 & 28 & 20 \\
Clayton, IA & 80 & 63 & 9 & 8 \\
Star, TX & 63 & 50 & 12 & 11 \\
Kitison, MN & 32 & 25 & 4 & 4 \\
Prentiss, MS & 17 & 13 & & 18.4 \\
Mean & & 93.6 & & \\
Standard & & 90.5725 & & 10.9565 \\
Deviation & & 8203.38 & & 120.04 \\
\hline Variance & &
\end{tabular}

Note: Richland, Ohio became an SMSA as of 1977.
\({ }^{\bullet}\) Derated by a factor of 1.26 for Business, and 1.09 for Special Industrial. Industrial. The derating factor, defined by the FCC, corrects for frequency compounding and for users with more than one base station. Thus the derated counts represent the number of business and special industrial users of mobile radio.

\section*{Table A-7}

PREDICTED BUSINESS USERS FOR THE TEST COUNTIES
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{List (Cly State Busin Pbusin)} \\
\hline Cly & State & Busin & Pbusin \\
\hline Bulle & CA & 244.0 & 111.88817 \\
\hline Nevada & CA & 114.0 & 25.852902 \\
\hline Imperi & CA & 269.0 & 112.52465 \\
\hline Beaula & NC' & 28.00 & \$1.024.335 \\
\hline Richla & Ohio & 70.00 & 132.50706 \\
\hline Crawfo & Ohio & 60.00 & 50.263037 \\
\hline Clayto & Howa & 63.00 & 47.683770 \\
\hline Start & Texas & 50.00 & 37.945053 \\
\hline Killso & MN & 25.00 & 28.152043 \\
\hline Prenti & MS & 13.00 & 25.277404 \\
\hline
\end{tabular}

\section*{Table A-8}

PREDICTED INDUSTRIAL USERS FOR THE TEST COUNTIES
\begin{tabular}{|llcc|}
\hline Cly & State & Indus & Pindus \\
Butte & CA & 19.0 & 42.941700 \\
Nevada & CA & 11.0 & 6.7696286 \\
Imperi & CA & 39.0 & 47.616709 \\
Beaufo & NC & 17.0 & 14.624555 \\
Richla & Ohio & 25.0 & 39.983642 \\
Crawfo & Ohio & 32.0 & 14.005625 \\
Clayto & lowa & 18.0 & 13.881360 \\
Starr & Texas & 8.00 & 19.781204 \\
Kitiso & MN & 11.0 & 20.793924 \\
Prenti & MS & 4.00 & 6.9495376 \\
\hline
\end{tabular}
dictions seem to follow the actual data. However, just employing the sample mean of the 73 counties for the predicted value might perform better for the special industrial data. In this context we note that the predictor equations were not developed for SMSA counties and Richland, OH, is an SMSA county as of 1977. Furthermore, Butte, CA, became an SMSA county as of the 1980 census and for our study is counted as an SMSA county. If these two counties are removed, the performance of the predictor equations improves greatly.

Table A- 9 shows the error sum of squares obtained by employing the means of the 73 counties as predictors and also the predictor equations, hoth for the 10 test counties and for the eight non-SMSA test counties. Even though the variability and skewness is more pronounced in the test data than in the original sample for the business counts, for both the non-SMSA and complete data sets, the predictor equation still accounts for more than \(50 \%\) of the variation (as measured by the error SS) as opposed to the original sample mean. This is consistent with the analysis obtained in developing this predictor equation. For the special industrial counts the predictor equation fares somewhat poorly for the complete data set. However, in the case of only the non-SMSA counties the predictor equation accounts for about \(64 \%\) of the variation as opposed to the origina! sample mean. This is consistent with the analysis obtained in developing this predictor equation.

Therefore even though the model validation study was performed on additional data that were not selected at random the results indicate the appropriateness of the prediction equations. Thus we have no grounds to suspect performance statistically different from that observed in the original sample for the use of the predictor equations with non-SMSA counties. Indeed it may be that the predictor equations we have developed are valid for all counties. However, SMSA counties and especially those that have been recently so classified may have increased and/or widely varying levels of total business activity. This cannot be completely reflected in the County and City Data Book since the most recent entries are for the year 1976. Therefore the ancillary data we have employed may not be representative of the present business and industrial environment for some counties. This could in part explain the performance of the special industrial regression for the 10 test counties.

Now that we have two predictor equations that appear to be acceptable we need to employ them to form a prediction of total mobile radio usage in a given county. The business and special industrial licensees comprise \(64.45 \%\) of the total existing mobile radio market. \({ }^{10}\) For a

\footnotetext{
III Loc. cit. ECOsystems study.
}

Table A-9

\section*{ERROR SUM OF SQUARES OF PREDICTION}
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Mcan of 73 \\
Counties \\
B
\end{tabular} & \begin{tabular}{c} 
Predictor \\
Equation \\
A
\end{tabular} & \begin{tabular}{c} 
Ratio \\
A/B
\end{tabular} \\
\hline Business \\
All Test Counties & 107245.13 & 54780.621 & 0.510798 \\
Non-SMSA Test Counties & 62725.598 & 33419.953 & 0.532796 \\
Su'tial Indinllal & 1178.1205 & 1479.6792 & 1.25597 \\
AII I est Countics & 1069.6416 & 681.96467 & 0.637564 \\
\hline
\end{tabular}
given non-sampled CONUS county we estimate the number of business and special industrial users, rounded to an integer. The total of these is then divided by 0.6445 to ratio it up to a county level of activity, again rounded. Thus we tacitly assume that the business and special industrial users are representative of all users. The individual totals for business and special industrial users are each multiplied by their respective erlang demands to obtain an erlang demand for each. These two are summed and then divided by 0.6445 to obtain the county total demand. The procedure is similar for the 73 sampled counties except the observed number of users was employed. Complete county listings were reported to NASA. A summay by state is given in Table 1.3-1 and a summary by footprint is given in Table 1.3-2. (See Section 1.3)

In the referenced ECOsystems study a correlation equation for county police was deveioped. We did not employ that correlator for two reasons. First it was based on an initial sample of 13 from the ultimate total sample of 73 counties. Second it would be difficult to predict total police activity for a given county because ECOsystems obtained state police data only on a statewide basis. This is important since ECOsystems estimated that all police activity accounts for \(4.99 \%\) of the total but gave no breakdown between state and county police. Thus we have no straightforward way to use the county police correlator.

\section*{Distribution of the Mobile Radio Telephone Market}

The mobile radio telephone market is largely unpentrated at this time. The present subscriber base does not reflect its true potential. Since no significant base exists, our study is formulated on survey data. The survey was conducted by Opinion Research Corporation (ORC) for the Audio Electronics Department of General Electric Company (GE) and reported by ORC \({ }^{11}\) and GE \({ }^{12}\)

The purpose of the survey was to explore the potential consumer market of a mobile radio that would allow a customer to have mobile radiotelephone service via his own residential telephone. The survey also explored the possible market for a mobile radiotelephone system that could be cellular compatible, and we shall employ that portion of the survey in our analysis.

The survey was of households and was conducted by telephone on December 23-27, and 31, 1981. and January 1-2, 1982. The ORC report gives complete details and a copy of the questionnaire. However, in order to qualify for the survey the respondent had to be the head of household, regularly operate a private passenger vehicle (car, pickup truck, or van), and have in the houset old at least one passenger vehicle. Also all respondents were questioned about passenger vehicles that were primarily used in work-related activities excluding driving to and from work.

Thus the survey directly represents the private use of mobile radiotelephone services. However, commercial use is indirectly represented in that much of the commercial market (doctors, lawyers, managers, etc.) is included in the survey. Since \(80 \%\) of the respondents (households) qualified for the survey, any underestimation of the market should not be significant. \({ }^{13}\)

\footnotetext{
""An Appraisal of a Mobile Communications Product for the Consumer," Opinion Research Corporation, North Harrison St., Box 183, Princeton, N. J., March, 1982
12 "Supplemental Comments and Petition to Expedite Initiation of Rulemaking Proceedings," General Electric filing before the Federal Communications Commission, PR Docket No. 79-140. May 11, 1982
\({ }^{13}\) Loc cit. ORC report.
}

Our investigation is based on a cross-tabulation study of question 32: "If a much better mobile telephone system were available to you that operated in a much wider range in all directions, and had no limitations on message length and did not require a base station in your home, how likely is it that jou would obtain such a system if the cost was \(\$ 750\) ( \(\$ 1000\) ) and the monthly service charge was \(\$ 50.00\) ( \(\$ 75.00\) )? Would you definitely purchase, very likely purchase, possibly purchase, very likely not purchase, definitely not purchase, or don`t know/no opinion?" All qualifying respondents (2509) were asked question 32 with approximately one half at the lower cost (1254) and one half at the higher cost (1255).

By employing the respondents' zipcode, \({ }^{14}\) a classification according to answer, price, and geographical location can he made.

The results are presented in Table A-10, in which we have grouped the answers "definitely purchase" and "very likely purchase." DEFIN denotes definitely purchase or very likely purchase; POSSIB denotes possibly purchase; VLNOT denotes very likely not purchise; DNOT denotes definitely not purchase, DONKNO denotes don't know/no opinion; CHEAP denotes the lower set of prices; and EXPENS denotes the higher set of prices. The totals differ from those previously given since 59 of the lower price respondents did not have their zipcodes recorded and 48 of the higher price respondents similarly did not have their zipcodes recorded. We assume that these missing data occurred at random.

\author{
\({ }^{14}\) Supplied by Mr. AI Gauthier, Audio Electronics Products Department, General Electric Co.
}

Table A-10

\section*{CROSSCLASSIFICATION OF ANSWERS TO QUESTION \(\mathbf{~} \mathbf{2}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline Price & Answer & SMSA & Non-SMSA & Totals \\
\hline \multirow{6}{*}{Cheap} & DEFIN & 15 & 5 & 20 \\
\hline & PoSSIB & 49 & 22 & 71 \\
\hline & VLNOT & 156 & 63 & 219 \\
\hline & DNOT & 638 & 232 & 870 \\
\hline & DONKNO & 8 & 7 & 15 \\
\hline & Totals & 866 & 329 & 1,195 \\
\hline \multirow{6}{*}{Expensive} & DEFIN & 10 & 4 & 14 \\
\hline & POSSIB & 28 & 9 & 37 \\
\hline & VLNOT & 130 & 45 & 175 \\
\hline & DNOT & 725 & 239 & 964 \\
\hline & DONKNO & 14 & 3 & 17 \\
\hline & Touris & 1.733 & 629 & 2.402 \\
\hline
\end{tabular}

Perusal of Table A-10 indicates that the overall response for non-SMSA and SMSA respondents is very nearly equivalent. Also there appears to be a definite difference in response due to price. In order to investigate this further we made a number of iwo-way contingency table analyses of the data. The results are shown in Table A-11. The P-value is that level at which the given result would just be significant. The \(\mathbf{P}\)-values for the various lests corroborate the results we obtained by inspection. It appears that location is independent of answur and price (at the usual statistical significance leveis), and answer is independent of location for either price. Answer and price are not independent for SMSA respondents, and very nearly the same is true for non SMSA respondents.

This finding is important since it indicates that the potential market penetration is the same for SMSA and non-SMSA regions of the country. In addition, significantly different penetrations of the market can be expected on the basis of price. It appears (based on these data) that price is much more important in determining the market penetration than is market location. By way of comparison, Motorola \({ }^{15}\) indicates that the capturable market as a percent of population will range between 0.5 and \(1.5 \%\), with the upper bound typically being for smaller markets with limited pay phone availability to respond to paging alerts.

To avoid any question of equivalence we base our further study only on the non-SMSA results. In order to be readily applied, the results for households need be converted into a population penetration factor. For this we employ the \(80 \%\) qualification factor and 1980 Census data. The total population as of the April 1980 version of the 1980 Census is \(226,504,825\). Also the number of households as of the same version is \(80,376,609\). \({ }^{16}\) Then the factur that converts an estimated proportion of households to a population fraction is
\[
(.8)(80,376,609 / 226,504,825)=0.283885
\]

For comparison purposes we determine a range of possible penetrations as indicated by the survey responses. The "definitely" and "very likely" purchase respondents represent a conservative market penetration. A likely market penetration is given by the conse: vative plus some portion of the "possibly purchase" respondents. We shall tale \(50 \%\) of these respondents as representative of a likely market penetration. Finally an uptimistic market penetration is given by all respondents who indicated any desire to purchase. For each of these possible markets we estimate a penetration for each of the two prices. The results are given in Table A-12. We see that the penetrations range from 0.38 to \(2.33 \%\) of the population. This covers the usually quoted range of 0.5 to \(1.5 \%\) given in other studies and is consistent with these earlier findings. \({ }^{17,16,19}\)

In the Lehman E:others et al. report (written by J.S. Bain, W.E. Himsworth, and S.B. Bristo!) a comparison of AT\&T, Motorola, and Telocator forecasts is made. Unfortunately AT\&T has not released great detail concerning its forecasts. However, by making very rea-

\footnotetext{
15 "An Inquiry into the Use of the Bands \(825-845 \mathrm{MHz}\) and \(870-890 \mathrm{MHz}\) for Cellular..." Motorola filing before the Federal Communications Commission, CC Docket No. 79-318, August 1980, Appendix A.
\({ }^{16}\) World Almanac and Book of Facts 1982, Nc:uspaper Enterprise Association, Inc., New York.
\({ }^{17}\) AT\&T filing, FCC Dock:t CC79-318, August 1980
\({ }^{18}\) Motorola filing, loc. cit.
19 "CMRS: Cellular Mobile Radio Telncommunications Service- Update on Emerging Technology," Lehnian Brott ers Kuhn Loeb Research, May 7, 1982.
}

Table A-11

\section*{RESULTS OF TWO-WAY CONTINGENCY TABLE ANALYSIS}
\begin{tabular}{|lc|}
\hline \multicolumn{1}{c}{ Two-Way Table } & P-Value ( \(x_{1}\) ) \\
Price vs Answer and Location & 0.16991 \\
Location vs Answer and Price & \(>50\) \\
Answer vs Price and Location & 1.09435 \\
Answer vs Location Given Cheap Price & 44.299 \\
Answer vs Location Given Expensive Price & \(>50\) \\
Answer va Price Given SMSA & 4.0446 \\
Answer vs Price Given Non-SMSA & 6.2394 \\
\hline
\end{tabular}

Table A-12

\section*{POSSIBLE MARKET PENETRATIONS AS A PERCENT OF POPULATION}
\begin{tabular}{|l|c|c|c|}
\hline Murket Penetrrion & & \\
\cline { 2 - 4 } & Conservative & Likely & Optimistic \\
\hline \begin{tabular}{l} 
Cheap \\
Price
\end{tabular} & \(0.431 \%\) & \(1.38 \%\) & \(2.33 \%\) \\
\begin{tabular}{l} 
Expensive \\
Price
\end{tabular} & \(0.379 \%\) & \(0.85 \%\) & \(1.23 \%\) \\
\hline
\end{tabular}
sonable assumptions and essentially backtracking the published AT\&T results, Bain et al. show that the AT\&T forecasts are about 2.5 times as large as those of Motorola. Thus AT\&T is operating with a penetration of 1.5 or higher. Furthermore AT\&T believes that this penetration is immediate. All of this is consistent with the top end of our estimated penetration factors, and we believe that an ultimate penetration of about \(2.0 \%\) of the population may be possible.

In order to determine the distribution of the market we decided to obtain results for the penetration factors \(0.5,1.0\), and \(1.5 \%\). These figures will allow comparisons to be made and are representative of the potential penetrations. We employed the population data given in the County and City Data Book for the year 1975. Complete county listings have been reported to NASA. A summary by state is given in Table 1.3-3, and a summary by footpri.tt is given in Table 1.3-4. (See Section 1.3)

The number of subscribers is obtained by multiplying by the appropriate penetration factor and then rounding. The erlang demands are obtained by multiplying the rumber of subscribers by an aveıage demand of 0.028 . This was obtained from the ECOsystems study. (We multiplied the ECOsystems value by 2 since their value was on a one-way basis and telephone usage requires duplexing.)

\section*{Appendix :}

\section*{CONTIGUOUS STATES SMSA AREAS AND AREA VS. POPULATION DENSITY}

The following list is derived from data in the County and City Data Book, 1977, U. S. Department of Commerce, Bureau of the Census. The areas of Standard Metroplitan Statistical Areas (SMSA's) in each state are as of the year 1980, but the population densities are the Census Bureau's estimates for 1977 as recorded in the Data Book. The areas in the list are the sums of areas with counties of the specified density, not the actual areas in each state with the indicated densities. The areas in some states with population density below 21 persons per square mile is larger than indicated, part:cularly in some western states where the counties are very large but are SMSA's because a metroplitan area lies within the county even though most of the county is sparsely populated.
\begin{tabular}{|c|c|c|c|c|}
\hline STATE & SMSA AREA & STATE TOTAL & AREA UNDER \(21 / \mathrm{MI}^{2}\) & \[
\begin{gathered}
\text { NON-SMSA } \\
\text { AREA OVER } \\
20 / \mathrm{MI}^{2}
\end{gathered}
\] \\
\hline Alabama & 14,493 & 50,708 & 7,839 & 28,376 \\
\hline Arizona & 18,395 & 113,417 & 95,022 & 0 \\
\hline Arkansas & 7,011 & 51,945 & 16,880 & 27,604 \\
\hline California & 83,725 & 156,361 & 57,097 & 15,539 \\
\hline Colorado & 16,379 & 103,766 & 87,008 & 379 \\
\hline Connecticut & 4,348 & 4,862 & 514 & 0 \\
\hline Delaware & 438 & 1,982 & 1,544 & 0 \\
\hline Washington, D.C. & 61 & 61 & 0 & 0 \\
\hline Florida & 26,273 & 54,090 & 11,519 & 16,306 \\
\hline Georgia & 10,568 & 58,073 & 10,709 & 36,796 \\
\hline Idaho & 1,043 & 82,677 & 70,748 & 10,886 \\
\hline Illincis & 14,416 & 55,748 & 1,556 & 39,776 \\
\hline Indiana & 13,306 & 36,097 & 0 & 22,791 \\
\hline lowa & 5,940 & 55,941 & 6,219 & 43,782 \\
\hline Kansas & 5,313 & 81,787 & 59,792 & 16,682 \\
\hline Kentucky & 5,045 & 39,650 & 0 & 34,605 \\
\hline Louisiana & 9,961 & 44,930 & 5,142 & 29,827 \\
\hline Maine & 6,481 & 30,920 & 18,870 & 5,569 \\
\hline Maryland & 4,947 & 9,891 & 0 & 4,944 \\
\hline Massachusetts & 6,575 & 7,826 & 0 & 1,287 \\
\hline Michigan & 16,067 & 56,817 & 13,098 & 27,652 \\
\hline Minnesota & 15,894 & 79,289 & 35,743 & 27.652 \\
\hline Mississippi & 4,378 & 47,296 & 7,224 & 35,694 \\
\hline Missouri & 9,466 & 68,995 & 25,300 & 34,229 \\
\hline Montana & 5,303 & 145,587 & 136,957 & 3,327 \\
\hline Nebraska & 1,674 & 76,483 & 62,423 & 12,386 \\
\hline Nevada & 14,240 & 109,889 & 95,499 & 150 \\
\hline N. Hampshire & 2,884 & 9,027 & 0 & 6,143 \\
\hline New Jersey & 5,662 & 7,521 & 0 & 1,859 \\
\hline New Mexico & 8,687 & 121,412 & 109,312 & 3,413 \\
\hline New York & 19,647 & 47,831 & 4,849 & 23,335 \\
\hline N. Carolina & 12,072 & 48,798 & 3,314 & 33,412 \\
\hline N. Dakota & 6,732 & 69,273 & 60,497 & 2,044 \\
\hline Chio & 18,218 & 40,975 & 0 & 22,757 \\
\hline Oklahoma & 13,562 & 68,782 & 36,784 & 18,436 \\
\hline Oregon & 12,289 & 96,184 & 74,061 & 9,834 \\
\hline Pennsylvania & 20,126 & 44,966 & 2,390 & 22,450 \\
\hline R hode Island & 1,049 & 1,049 & 0 & 0 \\
\hline S. Carolina & 9,523 & 30,225 & 652 & 20,050 \\
\hline S. Dakota & 813 & 75,955 & 66,018 & 9,124 \\
\hline Tennessee & 10,541 & 41,218 & 1,874 & 28,803 \\
\hline Texas & 50,378 & 262,134 & 177,864 & 33,892 \\
\hline Utah & 10,579 & 82,096 & 70,343 & 1,174 \\
\hline Vermont & 1,276 & 9,267 & 663 & 7,328 \\
\hline Virginia & 11,007 & 39,780 & 2,838 & 25,045 \\
\hline Washington & 18,763 & 66,570 & 38,017 & 9,790 \\
\hline West Virginia & 3,561 & 24,070 & 4,547 & 15,692 \\
\hline Wisconsin & 12,158 & 54,464 & 14,379 & 27,927 \\
\hline Wyoming & 5,342 & 97,203 & 89,158 & 2,721 \\
\hline TOTALS & 577,498 & 2,963,889 & 1,584,263 & 802,128 \\
\hline
\end{tabular}```

