1,022 research outputs found

    Titanium additions to MgB2 conductors

    Full text link
    A series of doping experiments are reported for MgB2 conductors that have been synthesized using doped boron fibers prepared by chemical vapor deposition(CVD) methods. Undoped MgB2 samples prepared from CVD prepared fibers consistently give critical current densities, Jc, in the range of 500,000 A/cm^2 in low field at 5K. These values fall by a factor of about 100 as the magnetic field increases to 3T. For heavily Ti-doped boron fibers where the B/Ti ratio is comparable to 1, there is a substantial suppression of both Tc, superconducting volume fraction, and Jc values. If, however, a sample with a few percent Ti in B is deposited on a carbon coated SiC substrate and reacted at 1100 degrees C for 15 min, then Tc is suppressed only a couple of degrees Kelvin and critical current densities are found to be approximately 2-5 x 10^6 A/cm^2 for superconducting layers ranging from 4-10 micrometers thick. These materials show Jc values over 10,000 A/cm^2 at 25K and 1.3 T.Comment: 10 pages, 6 figure

    Phoretic Motion of Spheroidal Particles Due To Self-Generated Solute Gradients

    Full text link
    We study theoretically the phoretic motion of a spheroidal particle, which generates solute gradients in the surrounding unbounded solvent via chemical reactions active on its surface in a cap-like region centered at one of the poles of the particle. We derive, within the constraints of the mapping to classical diffusio-phoresis, an analytical expression for the phoretic velocity of such an object. This allows us to analyze in detail the dependence of the velocity on the aspect ratio of the polar and the equatorial diameters of the particle and on the fraction of the particle surface contributing to the chemical reaction. The particular cases of a sphere and of an approximation for a needle-like particle, which are the most common shapes employed in experimental realizations of such self-propelled objects, are obtained from the general solution in the limits that the aspect ratio approaches one or becomes very large, respectively.Comment: 18 pages, 5 figures, to appear in European Physical Journal

    Electronic structure study of double perovskites A2A_{2}FeReO6_{6} (A=Ba,Sr,Ca) and Sr2M_{2}MMoO6_{6} (M=Cr,Mn,Fe,Co) by LSDA and LSDA+U

    Full text link
    We have implemented a systematic LSDA and LSDA+U study of the double perovskites A2A_{2}FeReO6_{6} (A=Ba,Sr,Ca) and Sr2_{2}MMMoO6_{6} (M=Cr,Mn,Fe,Co) for understanding of their intriguing electronic and magnetic properties. The results suggest a ferrimagnetic (FiM) and half-metallic (HM) state of A2A_{2}FeReO6_{6} (A=Ba,Sr) due to a pdd-π\pi coupling between the down-spin Re5+^{5+}/Fe3+^{3+} t2gt_{2g} orbitals via the intermediate O 2pπ2p_{\pi} ones, also a very similar FiM and HM state of Sr2_{2}FeMoO6_{6}. In contrast, a decreasing Fe t2gt_{2g} component at Fermi level (EFE_{F}) in the distorted Ca2_{2}FeReO6_{6} partly accounts for its nonmetallic behavior, while a finite pddpdd-σ\sigma coupling between the down-spin Re5+^{5+}/Fe3+^{3+} ege_{g} orbitals being present at EFE_{F} serves to stabilize its FiM state. For Sr2_{2}CrMoO6_{6} compared with Sr2_{2}FeMoO6_{6}, the coupling between the down-spin Mo5+^{5+}/Cr3+^{3+} t2gt_{2g} orbitals decreases as a noticeable shift up of the Cr3+^{3+} 3d levels, which is likely responsible for the decreasing TCT_{C} value and weak conductivity. Moreover, the calculated level distributions indicate a Mn2+^{2+}(Co2+^{2+})/Mo6+^{6+} ionic state in Sr2_{2}MnMoO6_{6} (Sr2_{2}CoMoO6_{6}), in terms of which their antiferromagnetic insulating ground state can be interpreted. While orbital population analyses show that owing to strong intrinsic pd covalence effects, Sr2M_{2}MMoO6_{6} (M=Cr,Mn,Fe,Co) have nearly the same valence state combinations, as accounts for the similar M-independent spectral features observed in them.Comment: 21 pages, 3 figures. to be published in Phys. Rev. B on 15th Se

    Sheep on Minnesota Farms.

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Phase diagrams of La1−xCaxMnO3\rm La_{1-x}Ca_xMnO_3 in Double Exchange Model with added antiferromagnetic and Jahn-Teller interaction

    Full text link
    The phase diagram of the multivalent manganites La1−xCaxMnO3\rm La_{1-x}Ca_xMnO_3, in space of temperature and doping xx, is a challenge for the theoretical physics. It is an important test for the model used to study these compounds and the method of calculation. To obtain theoretically this diagram for x<0.5x<0.5, we consider the two-band Double Exchange Model for manganites with added Jahn-Teller coupling and antiferromagnetic Heisenberg term. In order to calculate Curie and N\'{e}el temperatures we derive an effective Heisenberg model for a vector which describes the local orientation of the total magnetization of the system. The exchange constants of this model are different for different space directions and depend on the density of ege_g electrons, antiferromagnetic constants and the Jahn-Teller energy. To reproduce the well known phase transitions from A-type antiferromagnetism to ferromagnetism at low xx and C-type antiferromagnetism to G-type antiferromagnetism at large xx, we argue that the antiferromagnetic exchange constants should depend on the lattice direction. We show that ferromagnetic to A-type antiferromagnetic transition results from the Jahn-Teller distortion. Accounting adequately for the magnon-magnon interaction, Curie and N\'{e}el temperatures are calculated. The results are in very good agreement with the experiment and provide values for the model parameters, which best describe the behavior of the critical temperature for x<0.5x<0.5.Comment: 13 pages, 5 figure

    Transverse optical Josephson plasmons, equations of motion

    Get PDF
    A detailed calculation is presented of the dielectric function in superconducttors consisting of two Josephson coupled superconducting layers per unit cell, taking into account the effect of finite compressibility of the electron fluid. From the model it follows, that two longitudinal, and one transverse optical Josephson plasma resonance exist in these materials, for electric field polarization perpendicular to the planes. The latter mode appears as a resonance in the transverse dielectric function, and it couples directly to the electrical field vector of infrared radiation. A shift of all plasma frequencies, and a reduction of the intensity of the transverse optical Josephson plasmon is shown to result from the finite compressibility of the electron fluid.Comment: 17 pages, ReVTeX, 7 figures in eps forma

    Anisotropic optical properties of single-crystal GdBa2Cu3O7-delta

    Get PDF
    The optical spectrum of reduced-T(c) GdBa2Cu3O7-delta has been measured for polarizations parallel and perpendicular to the ab plane. The sample was an oxygen-deficient single crystal with a large face containing the c axis. The polarized reflectance from this face was measured from 20-300 K in the spectral region from 30-3000 cm-1, with 300 K data to 30 000 cm-1. Kramers-Kronig analysis was used to determine the spectral dependence of the ab and the c components of the dielectric tensor. The optical properties are strongly anisotropic. The ab-plane response resembles that of other reduced-T(c) materials whereas the c axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response along c above and below T(c). This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes

    Spin state and phase competition in TbBaCo_{2}O_{5.5} and the lanthanide series LnBaCo_{2}O_{5+\delta} (0<=\delta<=1)

    Full text link
    A clear physics picture of TbBaCo2_{2}O5.5_{5.5} is revealed on the basis of density functional theory calculations. An antiferromagnetic (AFM) superexchange coupling between the almost high-spin Co3+^{3+} ions competes with a ferromagnetic (FM) interaction mediated by both p-d exchange and double exchange, being responsible for the observed AFM-FM transition. And the metal-insulator transition is accompanied by an xy/xz orbital-ordering transition. Moreover, this picture can be generalized to the whole lanthanide series, and it is predicted that a few room-temperature magnetoresistance materials could be found in LnBa1−x_{1-x}Ax_{x}Co2_{2}O5+δ_{5+\delta} (Ln=Ho,Er,Tm,Yb,Lu; A=Sr,Ca,Mg).Comment: 13 pages, 2 figures; to be published in Phys. Rev. B on 1st Sept. Title and Bylines are added to the revised versio
    • …
    corecore