1,622 research outputs found

    Overview of the SME: Implications and Phenomenology of Lorentz Violation

    Full text link
    The Standard Model Extension (SME) provides the most general observer-independent field theoretical framework for investigations of Lorentz violation. The SME lagrangian by definition contains all Lorentz-violating interaction terms that can be written as observer scalars and that involve particle fields in the Standard Model and gravitational fields in a generalized theory of gravity. This includes all possible terms that could arise from a process of spontaneous Lorentz violation in the context of a more fundamental theory, as well as terms that explicitly break Lorentz symmetry. An overview of the SME is presented, including its motivations and construction. Some of the theoretical issues arising in the case of spontaneous Lorentz violation are discussed, including the question of what happens to the Nambu-Goldstone modes when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism can occur. A minimal version of the SME in flat Minkowski spacetime that maintains gauge invariance and power-counting renormalizability is used to search for leading-order signals of Lorentz violation. Recent Lorentz tests in QED systems are examined, including experiments with photons, particle and atomic experiments, proposed experiments in space and experiments with a spin-polarized torsion pendulum.Comment: 40 pages, Talk presented at Special Relativity: Will it Survive the Next 100 Years? Potsdam, Germany, February, 200

    On the nature of ferromagnetism in diluted magnetic semiconductors: GaAs:Mn, GaP:Mn

    Full text link
    A microscopic Hamiltonian for interacting manganese impurities in diluted magnetic semiconductors (DMS) is derived. It is shown that in p -type III-V DMS the indirect exchange between Mn impurities has similarities with the Zener mechanism in transition metal oxides. Here the mobile holes and localized states near the top of the valence band play the role of unoccupied oxygen orbitals which induce ferromagnetism. The Curie temperature estimated from the proposed kinematic exchange agrees with recent experiments on GaAs:Mn. The model is also applicable to the GaP:Mn system.Comment: 10 pages, 3 figures. Submitted to Europhysics Letters, June 25, 200

    Electroweak phase diagram at finite lepton number density

    Full text link
    We study the thermodynamics of the electroweak theory at a finite lepton number density. The phase diagram of the theory is calculated by relating the full 4-dimensional theory to a 3-dimensional effective theory which has been previously solved using nonperturbative methods. It is seen that the critical temperature increases and the value of the Higgs boson mass at which the first order phase transition line ends decreases with increasing leptonic chemical potential.Comment: 16 pages, 14 figures, RevTex4, v2: references added, minor corrections, v3: small changes, references added, published in Phys. Rev.

    Specific Heat Discontinuity in Impure Two-Band Superconductors

    Get PDF
    The Ginzburg-Landau coefficients, and the jump of the specific heat are calculated for a disordered two-band superconductor. We start with the analysis of a more general case arbitrary anisotropy. While the specific heat discontinuity at the critical temperature T_c decreases with increasing disorder, its ratio to the normal state specific heat at T_c increases and slowly converges to the isotropic value. For a strong disorder the deviation from the isotropic value is proportional to the elastic electron scattering time. In the case of a two-band superconductor we apply a simplified model of the interaction independent on momentum within a band. In the framework of this model all thermodynamic values can be found explicitly at any value of the scattering rate. This solution explains the sample dependence of the specific heat discontinuity in MgB_2 and the influence of the disorder on the critical temperature.Comment: New results relate to two-band superconductors, 9 pages, 2 figure

    Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models

    Get PDF
    A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR

    Relationship of Dental Caries and Fluorosis to Fluoride Supplement History in a Non-Fluoridated Sample of Schoolchildren

    Full text link
    A random sample of 206 Michigan children, aged from 9 to 13, were examined for fluorosis from a larger group of 2038 children participating in a dental project. Clinical examinations included caries data (DMFS) and assessment of fluorosis by use of the Tooth Surface Index of Fluorosis (TSIF). Separate examiners were used for each index. The response rate of a questionnaire mailed to parents to gather information on residence histories, use of fluoride supplements, and antibiotics was 78%. The prevalence of fluorosis was about 20% among the respondents. Of the 4868 tooth surfaces examined, 9.2% were affected by fluorosis. In all cases, dental fluorosis was judged as mild, with most occurrences on the posterior teeth. No instances of moderate or severe fluorosis were found. The caries experience of respondents was 1.69 ± 2.73 DMFS. Caries experience does not appear to be significantly related to income, education, or fluoride supplement use. Approximately 52% of respondents were reported to have taken fluoride supplements with various degrees of consistency. Parents' education was positively related to both prevalence of fluorosis (odds ratio = 2.2) and use of fluoride supplements (odds ratio = 2.7). No significant relation was revealed with evidence of fluorosis and use of supplements. This study shows a relatively mild level of dental fluorosis in a sample of children from a non-fluoridated area. Dental fluorosis in this group does not appear to be related to use of fluoride supplements or differences in caries experience.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66503/2/10.1177_08959374890030021501.pd

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Nodes of the Gap Function and Anomalies in Thermodynamic Properties of Superfluid 3^3He

    Full text link
    Departures of thermodynamic properties of three-dimensional superfluid 3^3He from the predictions of BCS theory are analyzed. Attention is focused on deviations of the ratios Δ(T=0)/Tc\Delta(T=0)/T_c and [Cs(Tc)Cn(Tc)]/Cn(Tc)[C_s(T_c)-C_n(T_c)]/C_n(T_c) from their BCS values, where Δ(T=0)\Delta(T=0) is the pairing gap at zero temperature, TcT_c is the critical temperature, and CsC_s and CnC_n are the superfluid and normal specific heats. We attribute these deviations to the momentum dependence of the gap function Δ(p)\Delta(p), which becomes well pronounced when this function has a pair of nodes lying on either side of the Fermi surface. We demonstrate that such a situation arises if the P-wave pairing interaction V(p1,p2)V(p_1,p_2), evaluated at the Fermi surface, has a sign opposite to that anticipated in BCS theory. Taking account of the momentum structure of the gap function, we derive a closed relation between the two ratios that contains no adjustable parameters and agrees with the experimental data. Some important features of the effective pairing interaction are inferred from the analysis.Comment: 17 pages, 4 figure

    N\'eel transition, spin fluctuations, and pseudogap in underdoped cuprates by a Lorentz invariant four-fermion model in 2+1 dimensions

    Full text link
    We show that the N\'eel transition and spin fluctuations near the N\'eel transition in planar cuprates can be described by an SU(2) invariant relativistic four-fermion model in 2+1 dimensions. Features of the pseudogap phenomenon are naturally described by the appearance of an anomalous dimension for the spinon propagator.Comment: 5 pages, 2 figures (revtex4). Final revised and corrected versio
    corecore