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The Ginzburg-Landau coefficients and the jump of the specific heat are calculated for a disordered two-band
superconductor. We start with the analysis of a more general case with arbitrary anisotropy. While the specific-
heat discontinuity at the critical temperatdrgdecreases with increasing disorder, its ratio to the normal-state
specific heat at ; increases and slowly converges to the isotropic value. For strong disorder the deviation from
the isotropic value is proportional to the elastic electron-scattering time. In the case of a two-band supercon-
ductor we apply a simplified model of the interaction independent of the momentum within a band. In the
framework of this model all thermodynamic variables can be found explicitly at any value of the scattering
rate. This solution explains the sample dependence of the specific-heat discontinuity jraMyBe influence
of disorder on the critical temperature.

DOI: 10.1103/PhysRevB.68.104517 PACS nuniber74.20.Fg, 74.72:h

I. INTRODUCTION resistivity of the normal metal,, is determined by this scat-
tering time. Thus, our formula can be used for the investiga-
The investigation of the specific he@{(T) is an impor-  tion of correlations in the experimentally determined

tant tool for understanding the nature of the superconductivAC/C, (T,) versuspe(T.)/T. plot. The comparison of the
ity and the anisotropy of the superconducting ggifT) on  theoretical curve and the experimental data can reveal the
the Fermi surface,=Eg. Historically, the relative specific- gap anisotropyA, , and the scattering rate A/T;). The gap
heat jump AC/C,(T;) was used to establish the BCS may depend on both the quasimomentpnand the band
picturé' for conventional superconductors having nearly iso-index b.
tropic gap. Subsequently the thermodynamics of clean The applicability of the weak-coupling theory to Mg
anisotropic-gap superconductors was analyzed in the weakontroversial. However, experimental results on the relative
coupling approximation by Pokrovskii and Ryvir.They specific-heat discontinuityindicate that the anisotropy effect
have found that anisotropy suppresses the vAIGéC, (T.) is more profound than the effect of interaction. For this com-
in comparison to its isotropic value 1.43. This inequality ispound, the reduced specific heAC/C,(T.) is definitely
not satisfied in classical low-temperature superconductorsmaller than the weak-coupling BCS value 1.43. Moreover,
partly because they are not extremely clean, but also sinage temperature dependence of the specific heat of the super-
the weak-coupling approximation has a poor precision. Geiconducting phase is described fairly wWeltly the two-band
likman and Kresifi have proved that the first correction due modef and the relative specific-heat jump agreesth the
to interaction increaseAC/C,(T.) and thus disguises the Moskalenko weak-coupling formufiThe comparison of the
effect of anisotropy. The modern superconductors displayatter with the ab initio strong-coupling calculatiofisfor
considerable anisotropy. In particular, superconductivity isMigB, shows that the decrease C/C,(T.), due to differ-
highly anisotropic in MgB. This fact is the main motivation ent values of the superconducting gap for different bands, is
for this work. It is well known that only superconducting at least two times bigger than the increase of this reduced
crystals of very high quality can reach the theoretical cleanspecific heat-jump due to strong-coupling effects. We address
limit asymptotics. As a rule, the reduced specific-heat jumghis point in the concluding section.
is sample dependent, and understanding such a disorder de-
pendence is a challenging problem. The latter is especially
important for MgB,, a compound now being in the limelight Il. CLEAN SUPERCONDUCTORS

of superconductor materials science. In this section we reproduce some results for anisotropic

The aim of the present paper is to derive the dependencgean superconductors obtained by different authors many

of the critical temperature and the relative specific-heat jum : : - . )
ACIC,(T,) on the elastic-scattering time of the charge CarB/ears ago and derive an equation for the specific heat discon

. . tinuity in this case. Though none of these results are new,
riers at the c_rltlc_al ter_nperatur_n{Tg) for two-band supercon- they are necessary for understanding the next sections.
ductors having in mind appllcatlon to MgBFor this pur- . It was shown in Ref. 3 that, within the framework of the
pose we.need corresponding formulas_ for a genera] dlrt.\4veak—coupling theory, the order parameter possesses the
anisotropic superconductor. Such equations were derived i roperty of separability:

Ref. 5. We reproduce them here for the reader’s convenience '

and because several misprints occurred in the cited work

which we correct here. In the-approximation the electrical Ay(M=E(T)xp- D
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According to Eq.(1), the temperature dependence characterThis equation together with the formulas for the GL coeffi-
ized by the factoE(T) is separated from the angular depen-cients, Eq.(4), leads to the following expression for the re-
dence described by the factar,. The Ginzburg-Landau duced jump of the specific heat:

(GL) expansion for the free-energy dendfy*?can be writ-

ten in terms of the temperature-dependent fag¢F) alone: AC 12 1

Co(To)  74(3) B’

1A (A2

The specific-heat jump per unit volume is related to the GL Ba (Ap)  (x*
coefficients by the following relation:

C

f(EaT):aO T
Cc

1
|E[*+ 5blE[". @

2 -
(Cs—Cpllr,=AC= Ti? 3 <3
¢ which is exactly the result obtained in Refs. 2 and 3; for a
whereCg is the specific heat per unit volume of the super-methodical derivation see Ref. 14. Using Ed) for T
conducting phase and,, is that of the normal phase. slightly lower thanT., we get for the equilibrium order pa-
Our starting points are the expressions of Gor'’kov andrameter
Melik-Barkhudarov® for the GL coefficients in the clean

=1.4268..., 9

limit which can be written as I T-Tca
TR P
5 | VF 2 2
2 2(27kgTe)e To—T (x9)
an=v 2, b= — 4’ (4) A 2:E2 2__ c c 2, 10
0 F<X > 2(27TkBTc)2<X > | p| | |eqXp 5(33 TC <X4> Xp ( )
where the Hurwitz and the Riemann zeta functiof(k, z) 2
and{(k), respectively, read which is the result by Gor’kov and Melik-Barkhudarby.
g(k,z):nzo (n+2)7k, g(k)zg(k’l):gl n-k (5 . DISORDERED ANISOTROPIC SUPERCONDUCTORS

A. Transition line and order parameter

and obey the relatioti(k, 3) = (2~ 1){(k). A simple varia- In this section we analyze the transition temperafiyras

tional derivation of Eq(4) is given in Ref. 14. The celebrity a function of the elastic-scattering rater nd the angular

of £(3) in mathematics has been discussed in Ref. 15. The@ependence of the order paramefgr. As was explained

normalized moments of the gap-anisotropy function are debefore, the angular dependence is the same for any tempera-

termined by averaging over the Fermi surface, having theure at fixedr. The transition line has been studied in Ref. 5.

general form in théd-dimensional case Although the equations obtained in the latter work were
rather general, their treatment was focused on a specific

" n dp situation—a mixture ofs- and d-pairing characteristic for
xh=-- Bsz S(ep— EF)V (27H)P cuprate superconductors. Therefore, it is useful to analyze

F the results for a less exotic case of anisotrappairing. The
ds, general equation for the transition line found in Ref. 5 reads

:ff — ©6)
ep=Br Vpup(27h) V(W) [?
N 9Te N2 Torr v =L (11)
whereds, is an infinitesimal surface element amg= V,e,, n 1-1(Tc, 1)V,

is the quasiparticle velocity. The quasimomentum space inWhere the following notations are introduced:
tegral is taken over the whole Brillouin zoBZ). The inte- 9 '

gration over the Fermi surface,=Eg implicitly includes 1 1

summation over fragments and sheets of different bands, if f(T,7)=— InL—F x+ =1, (12)
any. The normalizing factor m| 2mkgT 2

d 1 1 1
VF:f f —SpD 7) g(T,r)=; r X+E —r (E , (13
ep=Er vp(27H)

is the density of state®@09) per unit volume for fixed spin, X=(27kgT7/h)~*; €is the cutoff energyr (x) is the Euler
and enters the normal-phase specific heat digamma functiony,, are eigenvalues of the linear operator

V with kernel V(p,p’) equal to the electron-electron effec-
tive interaction energy at the Fermi surface multiplied by the

2
_ 5 2,2
Cn(T)= g 7 kgveT. ® DOS vg; W, (p) are the corresponding eigenfunctions nor-

3
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malized according to the conditiofi¥,|?)=1. The transi-  where (V)=(V(p)),. It should be noted that in the last
tion temperature of the clean superconductor is determineglquation differs from that for the clean superconductor,

by the equatiorf(T.o,7=%)=V, * which gives namely,
2ye

KeToo= —cexpl — Vo),  x=Wo, (14) > VW2

a — n
B ——E (18)

where ( > Vn(‘l’n>)

n
1
y=expC= dexdgr (2] =1.781, (15 B. Specific-heat discontinuity

. . . . The theory of dirty anisotropic superconducforsas
C=0.577 is the Euler cgnstant, g is the maximum ei- based on Green’s functions method combined with the
genvalue of the operatdf. The angular dependence of the aprikosov-Gor’kov averaging over the random impurity
order parameter in this case is given by the correspondingg|q 1819 A simplifying assumption was the isotropy of the
eigenfunctionWo(p). As long asxo=(2mkgTco7/%) * re-  scattering which is characterized by a constant rate ff
mains large the transition temperatdrediffers fromTeo by particular, the authors derived the GL equations and GL co-
insignificant corrections of the order of,*. We call the efficients with an accuracy of a common scaling fatteee
superconductomoderately dirtyif the value x, becomes also Ref. 20. For the representation adopted here this factor
small, butf(T,,7) is still close toV, . More precisely, it s (x?), as it follows from the comparison of E¢4) here

means thatin(er/%)—mV,Y|<V, *. Then the solution of Eq. and Egs.(48), (60), (78)—(82) in Ref. 5. Correcting a mis-

(11) reads print in Eq. (59) in Ref. 5, further repeated in Eq&1) and
(82) therein, and slightly regrouping terms we find
T k—1
Tel T):Tco(T_) : (16 2= vel(x*) ~ ((X*) = (X)*)Xeb2l, (19
0

wherex=(x?)/{x)*=1 is the anisotropy coefficient, which
is equal to 1 for an isotropic superconductor, amgl
=2hyl(mwkgT.o). In this range of the scattering rate the an- 2 2,3 2 44
gular dependence of the gag is identical to that for the +2(X N X)) “(Xela2tXcl32) (X)X Laal, (20
clean superconductog,="W¥o(p). Thus, the transition tem- \yhere

perature decreases in a powerlike way with the increase of

the scattering rate /or the residual resistivity s propor- hl (T, Xo
tional to this rate. This is a peculiarity of the anisotropic Xczzﬂ_k T TIT
superconductor. The exponent in Ed.6) is zero for the Blc Tellco
isotropic superconductor, cf. Ref. 16. Equatid®) was first  js the dimensionless scattering rate extrapolated to the criti-

derived by Hohenbefd for weakly anisotropic supercon- cal temperature. The resistivity of the normal mega| is
ductors. Its validity for arbitraryc in the range of moderate determined by the Drude formula:
dirt was proven in Ref. 5.

We call the dirtstrong if the parameter Ingr/4)/ = be- pat=m nér, (22)
-1 : 1
comes less thal, = and has the order of magnitude'ég -, wherem s the effective mass andis the density of normal

and if the differencev, * In(er/fi)/m is not small in com- charge carriers; for clean crystals the total volume density of

parison toV, . Equation(16) remains qualitatively correct, |l charge carriers, electrons and holes=e(n,—ny), can

but « becomes a slowly varying function of. The exact pe determined by the Hall constaRt,= 1/enin strong mag-

formula for the transition temperature in this range is givennetic fields. For clean superconductors, disregarding some

by Eq.(37) of Ref. 5. - subtleties, the same ratigm enters the London penetration
In the extra-dirty limit, Ing#/#)/7 becomes much smaller depth\ yeanat T=0:

thanvgl, but still er/A>1. The last inequality ensures that

the elastic scattering does not destroy the Fermi surface. In 1 ne?

the extra-dirty limit the angular d_ependence of_the gap )\2| r{o): mczso' (23

reaches its limiting value x,>V(p), where V(p) cea

=(V(p,p'))p - The equation foi. in the extra-dirty limit ~where in Gaussian unitso=1/4m; \eaf0)~0.1-1 xm.

b= &%I;TC)[<X4>§3,0_<X2>2XJ4,O+ A0 (xX)Xcl31

(21)

reads Multiplying these equations we obtain a useful estimate
- 2
2ve T = ficcegpelTe)
=— - K= Xe=——F——. (29
kgT(7) - exp( (V}) (erlh)< -, 17 c 277)\§|ear{0)kBTc
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The notation{,, in Eq. (20) stands for the generalized {30~ Xcla ot AXcla 1t 2(X3La ot X2L3) + X043
functions defined in Ref. 5 and taken at the value of the
argument! z.=x.+1/2, i.e., ={(3,112=7¢(3). (32
Likewise, using Eq(28) one can prove that the asymptotic
k1= L1 (Ze)- (25 form of AC/C,(T,) for an extremely disordered supercon-
For the reader’s convenience we recall the definition of thesgfgé?rinvi'tﬂ an arbitrary anisotropy is given by, to leading
functions: ¢
AC 12 27 k—1
. C(To 73| 73 33
La(2=3 (n+2) Kn+1/2)7", (26) n(Te)  74(3) 4B3) X
n=0 We remark that the correction of orderxl/comes entirely
They represent a natural generalization of the Hurwitz zetdO™ the coefficient given in Eq.(20).
functions: C. Two-band superconductors
Lko(2)=0(K,2),  Cko(1)=¢(k1)=(K). (27 1. Critical curve and order parameter
Below we provide the asymptotics ¢f,(z) for z—o nec- Keeping in mind the application to MgB(for a review

see Ref. 2§ we apply the general results of the previous

essary for the further calculations: . R
4 sections to a simplified model of a two-band superconductor.

I —k -1 In this model we assume that the Fermi surface consists of
(2~ (2 =1)¢(h)z = k[(2 Ded=1) two disconnected sheets having different DOS. The interac-
—(2'-1)¢(H/2]z7% Y for 1>2, tion amplitudeV(p,p’) is assumed to be a constant within
each band. Thus, it can be described by>a22matrix
a(@~2' =1z  for 1=2, W, U )
= : (34
{ki(2)~z MInz  for k=1, u w,

whereW; ,W, are the interaction energies between any two
1 points within the first and the second sheet of the Fermi
{ko(2)~(k—1) "1z K 1y Eka for k>1. (28)  surface, respectively) is the interaction between any two
points of different bands.

Let us note that, for integer argumerksthe Hurwitz zeta Let us first work out the transition temperaturg, and
functions are associated with the Euler polygamma functiorihe order parametey for a clean two-band superconductor.
r For our simplified model the order parameggyis a constant

within each band, i.e., it can be represented by a two-

(-t component vector
g(k+1,z)=k—,F< )(z), k=1,23.... (29
| o
X= .
With these notations the reduced discontinuity of the spe- X2
cific heat reads The eigenvectors? of the operatorV obey the following
2 linear equations:
AC  ap 12 1 30
Cu(To keTeb 74(3) B, 30 CIWL W1+ UYL=\,
where CiUW +coWo =AY, (39
1 where the coefficients; ,= v, ,/(v,+ v,) are the statistical
=743 2y (12— ()D)x 2 weights of the Ewo bands, which reflect the integral character
B LRI~ (X~ 007 xebzl of the operatoV. The two independent eigenvalues of Egs.
35) read
X[(x* a0~ (X *Xclaot A4 (X)XcLa1 39
_ Voi=No=7n*e, 36
+ 20X (0 A(XeLat X2La.2) +{(X)*Xelaal . 0= == (36
where
(31
1
This general equation will be applied in the following sec- n= E(C1W1+ c,W,),  e=E%+cc,U7,

tions to some important special cases.
It should be stressed that for isotropic superconductors,

1
(x"=1, the specific-heat jump is impurity independent: == (c,W;—C,W,). (37)
B,=1. The proof is straightforward taking into account the 2
identity The corresponding eigenvectors are
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1 and the dimensionless transition temperaturé
50, 1+ éle) =To(7)/Teo; Xc=Xo! 6. In terms of these variables the func-
1

v, = - , (3g) fionsfandg read
sgnU)\/=—(1—&le) 1 1
2c = T Ine—
2 f N 7_rlnéP g,
nu)\/ = (1-¢le) 1 1
—sg s—(1-¢le
2c = -z
v = 1 Tg=F xc+2 F(z). (48)

T .
\/E(lJr &le) The equation foiT finally takes the form
2

This is apparently a kind of Bogolyubov transformation. 9L\ ++(1=(0AN-— A A _]=(1—fA;)(1-Fr.),

Both vectors are normalized: (49
where
<|\I,t|2>zcllq’t,l|2+C2|"Pt,2|2:1- (39
, o : (cy8+cy)?
The average values of the anisotropic eigenfunctions read <X>2= . . C,=1-cy. (50)
C16°t+Cy

(W ,)=1 /% 1+ é +sgn(U) /%( 1— é) (40 To illustrate the possible dependenife;,), we have made a

numerical calculation settilg 5=2.63, A, =1.02, \_
v_)= U \/Cl +\/C2
(V_)=—sgnu) > >

=0.45, andc,=0.422; other authors calculate slightly dif-
. (41 ferentvalues for the two-band mottéf->*applied to MgB,

It is useful to write simple expressions for the squared aver

ages:

3

- £ 1+2
€ €

cf. Refs. 6,7, and 25-27. The results f@#(xy) and
AC/C(T) versusx. are shown in Fig. 1.

In the asymptotic regions of moderate and extreme dirt,
Eq. (16) is valid with

N| =

<q,t>2: 14

1
tocl(C1—cp)é+2¢,0,U], (42 (1 (c1—Cy)é
=12 €

cicoU)l Y ¢ 8%+,
+ =(

€ 16+C;)?
<\I’+>2+<\P7>2:11 <X>2:<\P+>2- ) *

For the gap ratia’, Eq.(38) gives

for the clean and moderate dirt cases, and

— WA+ W5+ cicy(27+U)U
A, Vi1 oxa \/C\z [e+§& = 2 2 2
A, V.o X2 gnv) Cc; Ve ¢ “3 !

for the extreme dirt case. The order parameter in the moder-
ate dirt range is proportional t& . . In the range of strong
disorder it reads

Whence the moments of the anisotropy function read
(A" cd'tc,
<A2>n/2 (C152+ Cz)nIZ'

Using the general results formulated earlier, we find the tran-
sition temperature of the clean two-band superconductor:

(X" = (44)

¢, W, +c,U— 7 Lcyc,d In(erlh) -
¢ U+ CoWo— 7 Lcycod In(erfi) |

In the limit of extreme disorder, laf/4)<W; 3, it tends to

2ve the limiting value:
Too=——exp(— m/\+). (45)
4 — [ciW;+coU
Equation(11) for the critical curve within this model can be Xexu= V= Ut W, (52

simplified to the following form: ) . )
It is worth noting that aiV;=W,=U the anisotropy param-

mg[ 7+ (C1—Cz)§+2¢1CU —CyCofd] eter« is equal to 1 for any value of the scattering rate inde-
pendent of the values; ,c,, and all thermodynamical values
=(1=AH)(L1-AA). (46) are independent of similar to the completely isotropic case.

Here we have denotedi= detV =W, W,— U2, and abbrevi-
ated the functions(T.,7) andg(T.,7) asf andg, respec- o
tively, cf. Egs.(12) and (13). It is convenient to recall the We note that the normalization factors of the gap-

2. Specific-heat discontinuity

dimensionless scattering rate anisotropy function and the superconducting gap mutually
cancel in the formulas for the experimentally measurable
Xo=(2mkgTeor/h) 1, (47 jump of the specific heat. Therefore, we can use the normal-
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1.1 the operatorV are spherical harmonic®,,=Y,m(6,®).
(a) Among the latter only oneW,,, has a nonzero average.
1 Thus, Eq.(11) takes the simple form
4 9(Te, )+ (T, 7=V, (53
:u \ According to definitions(12) and (13), the sumf(T,7)
S i +9(T,7) =7 YIn(el2mksT) — F (1/2)] does not depend on
I the scattering rate. Hencé&, also does not depend on the
0:7 ] scattering rate.
0.6 . .
E. Separable approximation
0.5 The separable approximation
0 1 2 3 4 5
Xo

V<p,p'>=§ VP (P)Wa(p ) ~Voxpxp , (54

——————————————— e whereWo(p)=yx,, is very often used for modeling the gap
I anisotropy in superconductofs,~=(T) x,. As we demon-
— strated earlier, this approximation is valid in the range of
1.2 - clean and moderately dirty superconductors. Applying this
/ approximation to the equation fdr, in the two-band model,

14

Eq. (49, we obtain the Moskalenko and Palistrafit,
Abrikosov*® and Kogan equatidil

23
TC(T)—(l e Flx+s|=rl5]|. 69

06 wheré* 1/7=1(1/71,+ 1/7,1), and 1k, and 1k, are rates

0 2 4 6 8 10 of interband scattering. The results of the numerical solution

Xe of this equation are depicted in Fig. 2. For superconductors
» with zero averaged gagAp)=0, which arep- and d-type

FIG. 1. (8 Critical curve T¢(r) for the two-band model: the  g,narconductors, for example, this equation formally coin-
reduced critical temperatue=T.(7)/ T Vs dimensionless scatter- cides with the Abrikosov-Gor'kov resaf3° for supercon-

ing rate xo="%/2mkgTo7xpe(T.). The set of parameters corre- d ; i i i ;

. o uctors with magnetic impurities; superconductivity disap-
sponds to MgB; for details see the textb) Reduced specific-heat o _ _
jump AC/C,(T,) as a function of the dimensionless scattering rateg;%r%e?twgliasgtlcal valueo=1/4y=0.1404. For weak

Xc=h12mkgT 7% pe(T.)/ T, for the same set of parameters. The
dashed line indicates the asymptotBCS) value forx.;>1. The 5 2 7
curve will be shifted up by about 20% due to strong-coupling ef- T xXH-x)° 7
TcO Tc"‘ <TcO-
fects. <X2> dkgT

AC/IC,(T.)

0.8 In

(56)

ization (y2) =1 without loss of generality. The calculations H&Nce, one of the most important properties of multigap and
made above can be used directly to find the averages necediSotropic superconductors is that the nonmagnetic impuri-
sary for the calculation of the specific heat. The influence ofi€S are pair breaking, similar to magnetic impurities in con-

. 4 . . .
the disorder on the relative specific-heat discontinuity for aventional superconductofs:* A similar influence of struc-
two-band superconductor is shown in Figb)l In the ex- tural defects was discussed by Abrikodbvior triplet

treme dirty limit we find that the relative specific-heat dis- SUP€rfluids. The reduction of the critical temperature by dis-
continuity tends to its isotropic value in agreement with the@rder has been observed for layered cupréfte¥;**for im-

fact that the density of states becomes isotropic in this fimit. PUrity scattering |2r21 the triplet superconduéﬁ_)UPts and re-
cently for MgB,.““ Only dimensionless ratios of the gap

function moments, such aéx)?(x? in Eq. (55), or
(x®>)?1{x* in Eq. (9), are relevant for the thermodynamics

It is straightforward to verify that in the isotropic case of superconductors. This explains why strongly anisotropic-
(x=const on the Fermi surfagéhe coefficientey andb do  gap layered cuprates were seemingly successfully analyzed
not depend orr. Thus, neither the energy gap nor the spe-as two-band superconductttsthis reference is a compre-
cific heat is influenced by impurities, in accordance with thehensive review of the properties of multigap superconduct-
Anderson theorerf Analyzing Eq.(11), we conclude that ors), and vice versa why the first prominent two-gap super-
the transition temperature also does not depend on the scatenductor MgB could be analyzed as if it were a single-
tering rate. Indeed, in the isotropic case the eigenfunctions dfand anisotropic-gap superconductocf. Ref. 37.

D. Dirty isotropic alloys

104517-6
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1 [ the derived weak-coupling formula can be as useful for the
<x>2 / < 2>=1 analysis ofAC versuspg correlations as the weak-coupling
theory was successful in describing the temperature depen-

dence of the specific heat for the clean MgBamples.

0.8 Thus, we conclude that the weak-coupling theory of the im-
\\\\ purity reduction of the specific-heat jump can reveal the
\\\ N ~—~— 0.8 main trend and qualitative properties of the effect.

0.6 — Here we wish to emphasize that according to the analysis

™~
—~
\ . .
\\\\\ \\\ of the two-band modét only the interband scattering rate
\
\
~—

Tc/ TcO

scattering 14, cf. Ref. 38. Consequently, proper scaling of
\ 0.6 the resistivity abscissa is needed in the experimental data of
m T./T.o versuspg, and the subsequent data analysis can be-

come an important tool for the determination of, /7,
\ 04 >1. This scattering rate ratio is specific for every type of
disorder in MgB. We conclude that only properly scaled
data of T versusp, should display the universal behavior
shown in Fig. 2.

0 0.2 0.4 0.6 0.8 1 Irradiated superconductors are also a good example for

X0 the application of the present theory. Furthermore, let us note
that conventional dirty superconducting alloys, for which a
big enough series of samples with continuously changing
resistivity can be prepared, are the best tool to investigate the
influence of disorder on the thermodynamics of supercon-
ductors. Finally, let us summarize our results.

1/7., is relevant to the reduction of the transition tempera-
ture. However, resistivity is created mainly by intraband
02|

0.2 I

FIG. 2. Critical curvesd=T./T VS Xq=hl2mwkgT ;o7 for dif-
ferent gap anisotropigg)?/(x?)=0, 0.2, 0.4, 0.6, 0.8, and 1. For
an isotropic superconductdiy) =1, the critical temperature is dis-
order independent while fgr- or d-type superconductor@s some
CuO, superconductors aréy)=0 and the transition line is exactly : . - .

(i) In anisotropic superconductors the transition tempera-

the same as the Abrikosov-Gor'kB° curve for magnetic impuri- ) : i al
ties in isotropic superconductors. ture is suppressed by disorder liKe,~ 7%, where k

=(x%)/{x)? is an anisotropy parameter which is a slowly
varying function ofr.
(i) The order parameter retains its angular dependence as

In order to investigate the dependenceAd®/C(T¢) on  |ong aser/A>1, whereas the DOS becomes isotropic for

1/7T. one needs a good method for the determination.of ¢y <\ The anisotropy of the order parameter can be
This could be far-infrared measurement of the h'gh'probed in tunneling experiments.

frequency gonductivi.ty, or merely the static resistivity. For (iii) The specific heat is suppressed by disorder just like
polycrystalline materials one has to use compounds such > with an accuracy of a slowly varying factor.

MgB, with good contact between grains. The variation of the (iv) The relative jump of the specific heAC/C,(T,) is

resllzdua'\l/lresw;trl]wty can E[)_gaa_cgle/vfd by rgd"’gﬂ?n‘ ined b smaller than its isotropic value in the clean limit. It is en-
or gBZ. € gap ralito=An,/2, can be determined by pa,ceq by disorder tending to its isotropic limit in the ex-
spectroscopic measurements, and the ratio of the B0, ;. ome disordered case

can be calqulated f_rom first principles. Under these condi- (v) In isotropic superconductors, and the two-band model
tions, for high-quality clean samples we can evaluate th%vith A,=A, and arbitranc, /c,, T, andAC do not depend

up-shift of t_he AC/Cy(T,) curve, and_ th? influence of on the scattering rate 4/ in particular, this is the case for
strong-coupling effects. Another complication is related t°W1=W2=U

the variation of the electron wave functions in the two bands.
This can lead to different scattering rates in the two bands. If
the scattering time cannot be determined by spectroscopic
measurements one can use the value of the resistivity at the This work was supported by the Flemish Government
critical temperaturge(T.)/T.. Thus, the dependence 8¢  Program GOA and IUAP. V.L.P. acknowledges support
and the relative specific-heat jump on resistivityTat T,  from NSF under Grant No. DMR0072115 and by the von
will be given by our formula and Figs. 2 andhl, with the  Humboldt Foundation. He is also thankful to Professor W.
scale of the abscissa being a fitting parameter. We expect th8elke and RWTH Aachen for the hospitality.
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