1,208 research outputs found

    The Link between General Relativity and Shape Dynamics

    Full text link
    We show that one can construct two equivalent gauge theories from a linking theory and give a general construction principle for linking theories which we use to construct a linking theory that proves the equivalence of General Relativity and Shape Dynamics, a theory with fixed foliation but spatial conformal invariance. This streamlines the rather complicated construction of this equivalence performed previously. We use this streamlined argument to extend the result to General Relativity with asymptotically flat boundary conditions. The improved understanding of linking theories naturally leads to the Lagrangian formulation of Shape Dynamics, which allows us to partially relate the degrees of freedom.Comment: 19 pages, LaTeX, no figure

    Inferred relatedness and heritability in malaria parasites

    Get PDF
    Malaria parasites vary in phenotypic traits of biomedical or biological interest such as growth rate, virulence, sex ratio and drug resistance, and there is considerable interest in identifying the genes that underlie this variation. An important first step is to determine trait heritability (H2). We evaluate two approaches to measuring H2 in natural parasite populations using relatedness inferred from genetic marker data. We collected single-clone Plasmodium falciparum infections from 185 patients from the Thailand–Burma border, monitored parasite clearance following treatment with artemisinin combination therapy (ACT), measured resistance to six antimalarial drugs and genotyped parasites using 335 microsatellites. We found strong relatedness structure. There were 27 groups of two to eight clonally identical (CI) parasites, and 74 per cent of parasites showed significant relatedness to one or more other parasites. Initially, we used matrices of allele sharing and variance components (VC) methods to estimate H2. Inhibitory concentrations (IC50) for six drugs showed significant H2 (0.24 to 0.79, p = 0.06 to 2.85 × 10−9), demonstrating that this study design has adequate power. However, a phenotype of current interest—parasite clearance following ACT—showed no detectable heritability (H2 = 0–0.09, ns) in this population. The existence of CI parasites allows the use of a simple ANOVA approach for quantifying H2, analogous to that used in human twin studies. This gave similar results to the VC method and requires considerably less genotyping information. We conclude (i) that H2 can be effectively measured in malaria parasite populations using minimal genotype data, allowing rational design of genome-wide association studies; and (ii) while drug response (IC50) shows significant H2, parasite clearance following ACT was not heritable in the population studied

    What factors influence the rediscovery of lost tetrapod species?

    Get PDF
    We created a database of lost and rediscovered tetrapod species, identified patterns in their distribution and factors influencing rediscovery. Tetrapod species are being lost at a faster rate than they are being rediscovered, due to slowing rates of rediscovery for amphibians, birds and mammals, and rapid rates of loss for reptiles. Finding lost species and preventing future losses should therefore be a conservation priority. By comparing the taxonomic and spatial distribution of lost and rediscovered tetrapod species, we have identified regions and taxa with many lost species in comparison to those that have been rediscovered—our results may help to prioritise search effort to find them. By identifying factors that influence rediscovery, we have improved our ability to broadly distinguish the types of species that are likely to be found from those that are not (because they are likely to be extinct). Some lost species, particularly those that are small and perceived to be uncharismatic, may have been neglected in terms of conservation effort, and other lost species may be hard to find due to their intrinsic characteristics and the characteristics of the environments they occupy (e.g. nocturnal species, fossorial species and species occupying habitats that are more difficult to survey such as wetlands). These lost species may genuinely await rediscovery. However, other lost species that possess characteristics associated with rediscovery (e.g. large species) and that are also associated with factors that negatively influence rediscovery (e.g. those occupying small islands) are more likely to be extinct. Our results may foster pragmatic search protocols that prioritise lost species likely to still exist

    An optimized microarray platform for assaying genomic variation in Plasmodium falciparum field populations

    Get PDF
    We present an optimized probe design for copy number variation (CNV) and SNP genotyping in the Plasmodium falciparum genome. We demonstrate that variable length and isothermal probes are superior to static length probes. We show that sample preparation and hybridization conditions mitigate the effects of host DNA contamination in field samples. The microarray and workflow presented can be used to identify CNVs and SNPs with 95% accuracy in a single hybridization, in field samples containing up to 92% human DNA contamination

    By hook or by crook? Morphometry, competition and cooperation in rodent sperm

    Get PDF
    Background Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or “trains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm. Methodology/Principal Findings Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse. Conclusions Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function

    The simulation of action disorganisation in complex activities of daily living

    Get PDF
    Action selection in everyday goal-directed tasks of moderate complexity is known to be subject to breakdown following extensive frontal brain injury. A model of action selection in such tasks is presented and used to explore three hypotheses concerning the origins of action disorganisation: that it is a consequence of reduced top-down excitation within a hierarchical action schema network coupled with increased bottom-up triggering of schemas from environmental sources, that it is a more general disturbance of schema activation modelled by excessive noise in the schema network, and that it results from a general disturbance of the triggering of schemas by object representations. Results suggest that the action disorganisation syndrome is best accounted for by a general disturbance to schema activation, while altering the balance between top-down and bottom-up activation provides an account of a related disorder - utilisation behaviour. It is further suggested that ideational apraxia (which may result from lesions to left temporoparietal areas and which has similar behavioural consequences to action disorganisation syndrome on tasks of moderate complexity) is a consequence of a generalised disturbance of the triggering of schemas by object representations. Several predictions regarding differences between action disorganisation syndrome and ideational apraxia that follow from this interpretation are detailed

    Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis

    Get PDF
    An integrated understanding of therapeutic plasma exchange (TPE) effects on immunoglobulins, autoantibodies, and natural or acquired (vaccine) protective antibodies in patients with autoimmune myasthenia gravis (MG) is lacking. Prior studies measured TPE effects in healthy volunteers or heterogeneous autoimmune diseases populations. We prospectively profiled plasma IgA, IgM, IgG, IgG subclasses (IgG1-4), acetylcholine receptor autoantibodies (AChR+), and protective antibodies in patients with AChR+ MG receiving TPE for an exacerbation. TPE was performed according to institutional practice and patients were profiled for up to 12 weeks. Ten patients were enrolled (median age=72.9 years; baseline MG-Composite=21; median TPE treatments=6 during their first course) and all improved. The maximum decrease in all immunoglobulins, including AChR autoantibodies, was achieved on the final day of the first TPE course (approximately 60–70% reduction). Three weeks post-TPE mean AChR autoantibody, total IgG, IgG1 and IgG2 titers were below the reference range and had not recovered to within 20% of baseline, whereas other measured immunoglobulins approached baseline values. We did not generally observe an “overshoot” of immunoglobulins above pre-TPE levels or accelerated recovery of pathologic AChR autoantibodies. Protective antibody profiles showed similar patterns as other IgGs and were detectable at levels associated with protection from infection. A slow return to baseline for IgGs (except IgG3) was observed, and we did not observe any obvious effect of concomitant medications on this recovery. Collectively, these findings enhance our understanding of the immunological effects of TPE and further supports the concept of rapid immunoglobulin depletion for the treatment of patients with MG

    Shape Dynamics in 2+1 Dimensions

    Get PDF
    Shape Dynamics is a formulation of General Relativity where refoliation invariance is traded for local spatial conformal invariance. In this paper we explicitly construct Shape Dynamics for a torus universe in 2+1 dimensions through a linking gauge theory that ensures dynamical equivalence with General Relativity. The Hamiltonian we obtain is formally a reduced phase space Hamiltonian. The construction of the Shape Dynamics Hamiltonian on higher genus surfaces is not explicitly possible, but we give an explicit expansion of the Shape Dynamics Hamiltonian for large CMC volume. The fact that all local constraints are linear in momenta allows us to quantize these explicitly, and the quantization problem for Shape Dynamics turns out to be equivalent to reduced phase space quantization. We consider the large CMC-volume asymptotics of conformal transformations of the wave function. We then use the similarity of Shape Dynamics on the 2-torus with the explicitly constructible strong gravity (BKL) Shape Dynamics Hamiltonian in higher dimensions to suggest a quantization strategy for Shape Dynamics.Comment: 15 pages, LaTeX, no figure

    Match-action: the role of motion and audio in creating global change blindness in film

    Get PDF
    An everyday example of change blindness is our difficulty to detect cuts in an edited moving-image. Edit Blindness (Smith & Henderson, 2008) is created by adhering to the continuity editing conventions of Hollywood, e.g. coinciding a cut with a sudden onset of motion (Match-Action). In this study we isolated the roles motion and audio play in limiting awareness of match-action cuts by removing motion before and/or after cuts in existing Hollywood film clips and presenting the clips with or without the original soundtrack whilst participants tried to detect cuts. Removing post-cut motion significantly decreased cut detection time and the probability of missing the cut. By comparison, removing pre-cut motion had no effect suggesting, contrary to the editing literature, that the onset of motion before a cut may not be as critical for creating edit blindness as the motion after a cut. Analysis of eye movements indicated that viewers reoriented less to new content across intact match-action cuts than shots with motion removed. Audio played a surprisingly large part in creating edit blindness with edit blindness mostly disappearing without audio. These results extend film editor intuitions and are discussed in the context of the Attentional Theory of Cinematic Continuity (Smith, 2012a)
    corecore