5,459 research outputs found

    Opportunity and Means: Horizontal Gene Transfer from the Human Host to a Bacterial Pathogen

    Get PDF
    The acquisition and incorporation of genetic material between nonmating species, or horizontal gene transfer (HGT), has been frequently described for phylogenetically related organisms, but far less evidence exists for HGT between highly divergent organisms. Here we report the identification and characterization of a horizontally transferred fragment of the human long interspersed nuclear element L1 to the genome of the strictly human pathogen Neisseria gonorrhoeae. A 685-bp sequence exhibiting 98 to 100% identity to copies of the human L1 element was identified adjacent to the irg4 gene in some N. gonorrhoeae genomes. The L1 fragment was observed in ~11% of the N. gonorrhoeae population sampled but was not detected in Neisseria meningitidis or commensal Neisseria isolates. In addition, N. gonorrhoeae transcripts containing the L1 sequence were detected by reverse transcription-PCR, indicating that an L1-derived gene product may be produced. The high degree of identity between human and gonococcal L1 sequences, together with the absence of L1 sequences from related Neisseria species, indicates that this HGT event occurred relatively recently in evolutionary history. The identification of L1 sequences in N. gonorrhoeae demonstrates that HGT can occur between a mammalian host and a resident bacterium, which has important implications for the coevolution of both humans and their associated microorganisms

    Shockwaves in converging geometries

    Get PDF
    Plate impact experiments are a powerful tool in equation of state (EOS) development, but are inherently limited by the range of impact velocities accessible to the gun. In an effort to dramatically increase the range of pressures which can be studied with available impact velocities, a new experimental technique is being developed. The possibility of using a confined converging target to focus Shockwaves and produce a large amplitude pressure pulse is examined. When the planar shock resulting from impact enters the converging target the impedance mismatch at the boundary of the confinement produces reflected Mach waves and the subsequent wave interactions produce a diffraction cycle resulting in increases in the shock strength with each cycle. Since this configuration is limited to relatively low impedance targets, a second technique is proposed in which the target is two concentric cylinders designed such that the inner cylinder will have a lower shock velocity than the much larger shock velocity in the outer cylinder. The resulting dispersion in the wave front creates converging shocks, which will interact and eventually result in a steady Mach configuration with an increase in pressure in the Mach disk. Numerical simulations indicate a significant increase in pressure for both methods and show promise for the proposed concepts

    A quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability

    Full text link
    Microscopic cascading of second-order nonlinearities between two molecules has been proposed to yield an enhanced third-order molecular nonlinear-optical response. In this contribution, we investigate the two-molecule cascaded second hyperpolarizability and show that it will never exceed the fundamental limit of a single molecule with the same number of electrons as the two-molecule system. We show the apparent divergence behavior of the cascading contribution to the second hyperpolarizability vanishes when properly taking into account the intermolecular interactions. Although cascading can never lead to a larger nonlinear-optical response than a single molecule, it provides alternative molecular design configurations for creating materials with large third-order susceptibilities that may be difficult to design into a single molecule.Comment: 13 pages, 9 figures, 1 tabl

    Target and Projectile: Material Effects on Crater Excavation and Growth

    Get PDF
    Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand

    Comment on studying the corrections to factorization in B -> D(*) X

    Get PDF
    We propose studying the mechanism of factorization in exclusive decays of the form B->D(*)X by examining the differential decay rate as a function of the invariant mass of the light hadronic state X. If factorization works primarily due to the large N_c limit then its accuracy is not expected to decrease as the X invariant mass increases. However, if factorization is mostly a consequence of perturbative QCD then the corrections should grow with the X invariant mass. Combining data for hadronic tau decays and semileptonic B decays allows tests of factorization to be made for a variety of final states. We discuss the examples of B->D^*\pi^+\pi^-\pi^-\pi^0 and B->D^*\omega\pi^-. The mode B->D^*\omega\pi^- will allow a precision study of the dependence of the corrections to factorization on the invariant mass of the light hadronic state.Comment: 7 pages, minor clarifications to tex

    Advances in Shock Compression of Mantle Materials and Implications

    Get PDF
    Hugoniots of lower mantle mineral compositions are sensitive to the conditions where they cross phase boundaries including both polymorphic phase transitions and partial to complete melting. For SiO_2, the Hugoniot of fused silica passes from stishovite to partial melt (73 GPa, 4600 K) whereas the Hugoniot of crystal quartz passes from CaCi_2 structure to partial melt (116 GPa, 4900 K). For Mg_2SiO_4, the forsterite Hugoniot passes from the periclase +MgSiO_3 (perovskite) assemblage to melt before 152 GPa and 4300 K, whereas the wadsleyite Hugoniot transforms first to periclase +MgSiO_3 (post-perovskite) and then melts at 151 GPa and 4160 K. Shock states achieved from crystal enstatite are molten above 160 GPa. High-pressure Grüneisen parameters for molten states of MgSiO_3 and Mg_2SiO_4 increase markedly with compression, going from 0.5 to 1.6 over the 0 to 135 GPa range. This gives rise to a very large (>2000 K) isentropic rise in temperature with depth in thermal models of a primordial deep magma ocean within the Earth. These magma ocean isentropes lead to models that have crystallization initiating at mid-lower mantle depths. Such models are consistent with the suggestion that the present ultra-low velocity zones, at the base of the lowermost mantle, represent a dynamically stable, partially molten remnant of the primordial magma ocean. The new shock melting data for silicates support a model of the primordial magma ocean that is concordant with the Berkeley-Caltech iron core model [1] for the temperature at the center of the Earth

    Shock temperatures of preheated MgO

    Get PDF
    Shock temperature measurements via optical pyrometry are being conducted on single-crystal MgO preheated before compression to 1905–1924 K. Planar shocks were generated by impacting hot Mo(driver plate)-MgO targets with Mo or Ta flyers launched by the Caltech two-stage light-gas gun up to 6.6 km/s. Quasi-brightness temperature was measured with 2–3% uncertainty by a 6-channel optical pyrometer with 3 ns time resolution, over 500–900 nm spectral range. A high-power, coiled irradiance standard lamp was adopted for spectral radiance calibration accurate to 5%. In our experiments, shock pressure in MgO ranged from 102 to 203 GPa and the corresponding temperature varied from 3.78 to 6.53 kK. For the same particle velocity, preheated MgO Hugoniot has about 3% lower shock velocity than the room temperature Hugoniot. Although model shock temperatures calculated for the solid phase exceeded our measurements by ~5 times the uncertainty, there was no clear evidence of MgO melting, up to the highest compression achieved

    The Principle of Symmetric Criticality in General Relativity

    Get PDF
    We consider a version of Palais' Principle of Symmetric Criticality (PSC) that is applicable to the Lie symmetry reduction of Lagrangian field theories. PSC asserts that, given a group action, for any group-invariant Lagrangian the equations obtained by restriction of Euler-Lagrange equations to group-invariant fields are equivalent to the Euler-Lagrange equations of a canonically defined, symmetry-reduced Lagrangian. We investigate the validity of PSC for local gravitational theories built from a metric. It is shown that there are two independent conditions which must be satisfied for PSC to be valid. One of these conditions, obtained previously in the context of transverse symmetry group actions, provides a generalization of the well-known unimodularity condition that arises in spatially homogeneous cosmological models. The other condition seems to be new. The conditions that determine the validity of PSC are equivalent to pointwise conditions on the group action alone. These results are illustrated with a variety of examples from general relativity. It is straightforward to generalize all of our results to any relativistic field theory.Comment: 46 pages, Plain TeX, references added in revised versio

    Current velocity and catch efficiency in sampling settlement-stage larvae of coral-reef fishes

    Get PDF
    Light traps and channel nets are fixed-position devices that involve active and passive sampling, respectively, in the collection of settlement-stage larvae of coral-reef fishes. We compared the abundance, taxonomic composition, and size of such larvae caught by each device deployed simultaneously near two sites that differed substantially in current velocity. Light traps were more selective taxonomically, and the two sampling devices differed significantly in the abundance but not size of taxa caught. Most importantly, light traps and channel nets differed greatly in their catch efficiency between sites: light traps were ineffective in collecting larvae at the relatively high-current site, and channel nets were less efficient in collecting larvae at the low-current site. Use of only one of these sampling methods would clearly result in biased and inaccurate estimates of the spatial variation in larval abundance among locations that differ in current velocity. When selecting a larval sampling device, one must consider not only how well a particular taxon may be represented, but also the environmental conditions under which the device will be deployed
    corecore