40,232 research outputs found

    Future Trends of Virtual, Augmented Reality, and Games for Health

    Get PDF
    Serious game is now a multi-billion dollar industry and is still growing steadily in many sectors. As a major subset of serious games, designing and developing Virtual Reality (VR), Augmented Reality (AR), and serious games or adopting off-the-shelf games to support medical education, rehabilitation, or promote health has become a promising frontier in the healthcare sector since 2004, because games technology is inexpensive, widely available, fun and entertaining for people of all ages, with various health conditions and different sensory, motor, and cognitive capabilities. In this chapter, we provide the reader an overview of the book with a perspective of future trends of VR, AR simulation and serious games for healthcare

    Spread of Infectious Diseases with a Latent Period

    Full text link
    Infectious diseases spread through human networks. Susceptible-Infected-Removed (SIR) model is one of the epidemic models to describe infection dynamics on a complex network connecting individuals. In the metapopulation SIR model, each node represents a population (group) which has many individuals. In this paper, we propose a modified metapopulation SIR model in which a latent period is taken into account. We call it SIIR model. We divide the infection period into two stages: an infected stage, which is the same as the previous model, and a seriously ill stage, in which individuals are infected and cannot move to the other populations. The two infectious stages in our modified metapopulation SIR model produce a discontinuous final size distribution. Individuals in the infected stage spread the disease like individuals in the seriously ill stage and never recover directly, which makes an effective recovery rate smaller than the given recovery rate.Comment: 6 pages, 3 figure

    Enhancement of superconducting transition temperature by the additional second neighbor hopping t' in the t-J model

    Full text link
    Within the kinetic energy driven superconducting mechanism, the effect of the additional second neighbor hopping t' on the superconducting state of the t-J model is discussed. It is shown that t' plays an important role in enhancing the superconducting transition temperature of the t-J model. It is also shown that the superconducting-state of cuprate superconductors is the conventional Bardeen-Cooper-Schrieffer like, so that the basic Bardeen-Cooper-Schrieffer formalism is still valid in quantitatively reproducing the doping dependence of the superconducting gap parameter and superconducting transition temperature, and electron spectral function at (Ï€,0)(\pi,0) point, although the pairing mechanism is driven by the kinetic energy by exchanging dressed spin excitations.Comment: 8 pages, 4 figures, added discussions and references, accepted for publication in Physics Letters

    Interplay between single particle coherence and kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the kinetic energy driven superconducting mechanism, the interplay between the single particle coherence and superconducting instability in doped cuprates is studied. The superconducting transition temperature increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime, however, the values of this superconducting transition temperature in the whole superconducting range are suppressed to low temperature due to the single particle coherence. Within this superconducting mechanism, we calculate the dynamical spin structure factor of cuprate superconductors, and reproduce all main features of inelastic neutron scattering experiments in the superconducting-state.Comment: 7 pages, 3 figures, typo correcte

    Thermal effects on lattice strain in hcp Fe under pressure

    Full text link
    We compute the c/a lattice strain versus temperature for nonmagnetic hcp iron at high pressures using both first-principles linear response quasiharmonic calculations based on the full potential linear-muffin-tin-orbital (LMTO) method and the particle-in-cell (PIC) model for the vibrational partition function using a tight-binding total-energy method. The tight-binding model shows excellent agreement with the all-electron LMTO method. When hcp structure is stable, the calculated geometric mean frequency and Helmholtz free energy of hcp Fe from PIC and linear response lattice dynamics agree very well, as does the axial ratio as a function of temperature and pressure. On-site anharmonicity proves to be small up to the melting temperature, and PIC gives a good estimate of its sign and magnitude. At low pressures, hcp Fe becomes dynamically unstable at large c/a ratios, and the PIC model might fail where the structure approaches lattice instability. The PIC approximation describes well the vibrational behavior away from the instability, and thus is a reasonable approach to compute high temperature properties of materials. Our results show significant differences from earlier PIC studies, which gave much larger axial ratio increases with increasing temperature, or reported large differences between PIC and lattice dynamics results.Comment: 9 figure
    • …
    corecore