12,421 research outputs found

    How credible are capital spending surveys as forecasts?

    Get PDF
    A comparison of the reliability of the Commerce Department's capital spending survey with that of several alternative forecasts.Capital investments ; Forecasting

    Inlets, ducts, and nozzles

    Get PDF
    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described

    Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    Get PDF
    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described

    Inlets, ducts and nozzles

    Get PDF
    The internal fluid mechanics research program in inlets, ducts, and nozzles is described. The program consists of a balanced effort between the development of computational tools and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: highly three-dimensional flow fields; shock-boundary layer interactions; and shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomena. In particular, the highly three-dimensional flow field phenomena is highlighted by describing the computational and experiemental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary layer interactions, the specific details of research for normal shock-boundary layer interactions are described. For shear layer control research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described. Future research in inlets, ducts, and nozzles will include more emphasis on three-dimensional full Navier-Stokes methods and corresponding experiments designed to concentrate on the appropriate three-dimensional fluid flow physics

    Impacts of a Standing Disaster Payment Program on U.S. Crop Insurance

    Get PDF
    This research investigates the potential effects of the standing disaster assistance program proposed in the Senate version of the 2008 Farm Bill. Results suggest no significant impact on producer crop insurance purchase decisions. Payments under the program should be expected to differ considerably across geographic regions and levels of diversification, with the program providing the greatest benefit to undiversified producers in more risky production regions (e.g., the Southern Plains).

    Impacts of the SURE Standing Disaster Assistance Program on Producer Risk Management and Crop Insurance Programs

    Get PDF
    This research investigates the potential effects of the row crop provisions of the standing disaster assistance program (SURE) in the 2008 Farm Bill. Results suggest little impact on producer crop insurance purchase decisions, though the program does seem to provide an incentive for mid-level coverage. Payments under the program should be expected to differ considerably across geographic regions and levels of diversification, with the program providing the greatest benefit to undiversified producers in more risky production regions.crop insurance, disaster assistance, Farm Bill, SURE, Agricultural and Food Policy, Farm Management, Risk and Uncertainty, Q12, Q18,

    Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation

    Get PDF
    The Gibbs-Thomson effect modifies the pressure and temperature at which clathrates occur, hence altering the depth at which they occur in the seabed. Nuclear magnetic resonance (NMR) measurements as a function of temperature are being conducted for water/ice/ hydrate systems in a range of pore geometries, including templated SBA-15 silicas, controlled pore glasses and sol-gel silicas. Rotator-phase plastic ice is shown to be present in confined geometry, and bulk tetrahydrofuran hydrate is also shown to probably have a rotator phase. A novel NMR cryoporometry protocol, which probes both melting and freezing events while avoiding the usual problem of supercooling for the freezing event, has been developed. This enables a detailed probing of the system for a given pore size and geometry and the exploration of differences between hydrate formation and dissociation processes inside pores. These process differences have an important effect on the environment, as they impact on the ability of a marine hydrate system to re-form once warmed above a critical temperature. Ab initio quantum-mechanical molecular dynamics calculations are also being employed to probe the dynamics of liquids in pores at nanometric dimensions

    FPGA-Based CNN Inference Accelerator Synthesized from Multi-Threaded C Software

    Full text link
    A deep-learning inference accelerator is synthesized from a C-language software program parallelized with Pthreads. The software implementation uses the well-known producer/consumer model with parallel threads interconnected by FIFO queues. The LegUp high-level synthesis (HLS) tool synthesizes threads into parallel FPGA hardware, translating software parallelism into spatial parallelism. A complete system is generated where convolution, pooling and padding are realized in the synthesized accelerator, with remaining tasks executing on an embedded ARM processor. The accelerator incorporates reduced precision, and a novel approach for zero-weight-skipping in convolution. On a mid-sized Intel Arria 10 SoC FPGA, peak performance on VGG-16 is 138 effective GOPS
    corecore