90,273 research outputs found

    Preliminary testing of a prototype portable X-ray fluorescence spectrometer

    Get PDF
    A portable X-ray fluorescence spectrometer for use as an analyzer in mineral resource investigative work was built and tested. The prototype battery powered spectrometer, measuring 11 by 12 by 5 inches and weighing only about 15 pounds, was designed specifically for field use. The spectrometer has two gas proportional counters and two radioactive sources, Cd (10a) and Fe (55). Preliminary field and laboratory tests on rock specimens and rock pulps have demonstrated the capability of the spectrometer to detect 33 elements to date. Characteristics of the system present some limitations, however, and further improvements are recommended

    The Infrared and Radio Fluxes Densities of Galactic HII Regions

    Get PDF
    We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 < l < 65 degree. Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic \hii regions \citep{anderson2014}. We compute flux densities at six wavelengths in the infrared (GLIMPSE 8 microns, WISE 12 microns and 22 microns, MIPSGAL 24 microns, and Hi-GAL 70 microns and 160 microns) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All HII region infrared flux densities are strongly correlated with their ~20 cm flux densities. All HII regions used here, regardless of physical size or Galactocentric radius, have similar infrared to radio flux density ratios and similar infrared colors, although the smallest regions (r<1r<1\,pc), have slightly elevated IR to radio ratios. The colors log10(F24micron/F12micron)0\log_{10}(F_{24 micron}/F_{12 micron}) \ge 0 and log10(F70micron/F12micron)1.2\log_{10}(F_{70 micron}/F_{12 micron}) \ge 1.2, and log10(F24micron/F12micron)0\log_{10}(F_{24 micron}/F_{12 micron}) \ge 0 and log10(F160micron/F70micron)0.67\log_{10}(F_{160 micron}/F_{70 micron}) \le 0.67 reliably select HII regions, independent of size. The infrared colors of ~22%\% of HII regions, spanning a large range of physical sizes, satisfy the IRAS color criteria of \citet{wood1989} for HII regions, after adjusting the criteria to the wavelengths used here. Since these color criteria are commonly thought to select only ultra-compact HII regions, this result indicates that the true ultra-compact HII region population is uncertain. Comparing with a sample of IR color indices from star-forming galaxies, HII regions show higher log10(F70micron/F12micron)\log_{10}(F_{70 micron}/F_{12 micron}) ratios. We find a weak trend of decreasing infrared to ~20 cm flux density ratios with increasing RgalR_{gal}, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.Comment: 27 pages, 16 figures, 5 table

    Quantum Cosmological Relational Model of Shape and Scale in 1-d

    Full text link
    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1-d to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues 1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schrodinger interpretation and records theory). 2) In quantum cosmology, such as in the investigation of uniform states, robustness, and the qualitative understanding of the origin of structure formation.Comment: References and some more motivation adde

    Numerical calculation of transonic boattail flow

    Get PDF
    A viscid-inviscid interaction procedure for the calculation of subsonic and transonic flow over a boattail was developed. This method couples a finite-difference inviscid analysis with an integral boundary-layer technique. Results indicate that the effect of the boundary layer is as important as an accurate inviscid method for this type of flow. Theoretical results from the solution of the full transonic-potential equation, including boundary layer effects, agree well with the experimental pressure distribution for a boattail. Use of the small disturbance transonic potential equation yielded results that did not agree well with the experimental results even when boundary-layer effects were included in the calculations

    New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split

    Full text link
    I show how there is an ambiguity in how one treats auxiliary variables in gauge theories including general relativity cast as 3 + 1 geometrodynamics. Auxiliary variables may be treated pre-variationally as multiplier coordinates or as the velocities corresponding to cyclic coordinates. The latter treatment works through the physical meaninglessness of auxiliary variables' values applying also to the end points (or end spatial hypersurfaces) of the variation, so that these are free rather than fixed. [This is also known as variation with natural boundary conditions.] Further principles of dynamics workings such as Routhian reduction and the Dirac procedure are shown to have parallel counterparts for this new formalism. One advantage of the new scheme is that the corresponding actions are more manifestly relational. While the electric potential is usually regarded as a multiplier coordinate and Arnowitt, Deser and Misner have regarded the lapse and shift likewise, this paper's scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose corresponding velocities are, respectively, the abovementioned previously used variables. This paper's way of thinking about gauge theory furthermore admits interesting generalizations, which shall be provided in a second paper.Comment: 11 page

    Triangleland. I. Classical dynamics with exchange of relative angular momentum

    Full text link
    In Euclidean relational particle mechanics, only relative times, relative angles and relative separations are meaningful. Barbour--Bertotti (1982) theory is of this form and can be viewed as a recovery of (a portion of) Newtonian mechanics from relational premises. This is of interest in the absolute versus relative motion debate and also shares a number of features with the geometrodynamical formulation of general relativity, making it suitable for some modelling of the problem of time in quantum gravity. I also study similarity relational particle mechanics (`dynamics of pure shape'), in which only relative times, relative angles and {\sl ratios of} relative separations are meaningful. This I consider firstly as it is simpler, particularly in 1 and 2 d, for which the configuration space geometry turns out to be well-known, e.g. S^2 for the `triangleland' (3-particle) case that I consider in detail. Secondly, the similarity model occurs as a sub-model within the Euclidean model: that admits a shape--scale split. For harmonic oscillator like potentials, similarity triangleland model turns out to have the same mathematics as a family of rigid rotor problems, while the Euclidean case turns out to have parallels with the Kepler--Coulomb problem in spherical and parabolic coordinates. Previous work on relational mechanics covered cases where the constituent subsystems do not exchange relative angular momentum, which is a simplifying (but in some ways undesirable) feature paralleling centrality in ordinary mechanics. In this paper I lift this restriction. In each case I reduce the relational problem to a standard one, thus obtain various exact, asymptotic and numerical solutions, and then recast these into the original mechanical variables for physical interpretation.Comment: Journal Reference added, minor updates to References and Figure

    Spatial patterns in the evolution of Cenozoic dynamic topography and its influence on the Antarctic continent

    Get PDF
    Our knowledge of dynamic topography in Antarctica remains in an infancy stage compared to other continents. We assess the space-time variability in dynamic topography in Antarctica by analysing grids of global dynamic topography in the Cenozoic (and late Cretaceous) based on the tomographic model S40RTS. Our model reveals that the Gamburtsev Province and Dronning Maud Land, two of the major nucleation sites for the East Antarctic Ice Sheet (EAIS) were ~500 m higher 60 Ma ago. The increased elevation may have facilitated ephemeral ice cap development in the early Cenozoic. Between ca 25 and 50 Ma the northern Wilkes Subglacial Basin was ca 200 m higher than today and a major increase in regional elevation (>600 m) occurred over the last 20-15 Ma over the northern and southern Victoria Land in the Transantarctic Mountains (TAM). The most prominent signal is observed over the Ross Sea Rift (RSR) where predicted Neogene dynamic topography exceeds 1,000 m. The flow of warm mantle from the West Antarctic Rift System (WARS)may have driven these dynamic topography effects over the TAM and RSR. However, we found that these effects are comparatively less significant over the Marie Byrd Land Dome and the interior of the WARS. If these contrasting dynamic topography effects are included, then the predicted elevations of the Ross Sea Embayment ca 20 Ma ago are more similar to the interior of the WARS, with significant implications for the early development of the West Antarctic Ice Sheet

    Foundations of Relational Particle Dynamics

    Full text link
    Relational particle dynamics include the dynamics of pure shape and cases in which absolute scale or absolute rotation are additionally meaningful. These are interesting as regards the absolute versus relative motion debate as well as discussion of conceptual issues connected with the problem of time in quantum gravity. In spatial dimension 1 and 2 the relative configuration spaces of shapes are n-spheres and complex projective spaces, from which knowledge I construct natural mechanics on these spaces. I also show that these coincide with Barbour's indirectly-constructed relational dynamics by performing a full reduction on the latter. Then the identification of the configuration spaces as n-spheres and complex projective spaces, for which spaces much mathematics is available, significantly advances the understanding of Barbour's relational theory in spatial dimensions 1 and 2. I also provide the parallel study of a new theory for which positon and scale are purely relative but orientation is absolute. The configuration space for this is an n-sphere regardless of the spatial dimension, which renders this theory a more tractable arena for investigation of implications of scale invariance than Barbour's theory itself.Comment: Minor typos corrected; references update

    Comparative Analysis of the Major Polypeptides from Liver Gap Junctions and Lens Fiber Junctions

    Get PDF
    Gap junctions from rat liver and fiber junctions from bovine lens have similar septilaminar profiles when examined by thin-section electron microscopy and differ only slightly with respect to the packing of intramembrane particles in freeze-fracture images. These similarities have often led to lens fiber junctions being referred to as gap junctions. Junctions from both sources were isolated as enriched subcellular fractions and their major polypeptide components compared biochemically and immunochemically. The major liver gap junction polypeptide has an apparent molecular weight of 27,000, while a 25,000-dalton polypeptide is the major component of lens fiber junctions. The two polypeptides are not homologous when compared by partial peptide mapping in SDS. In addition, there is not detectable antigenic similarity between the two polypeptides by immunochemical criteria using antibodies to the 25,000-dalton lens fiber junction polypeptide. Thus, in spite of the ultrastructural similarities, the gap junction and the lens fiber junction are comprised of distinctly different polypeptides, suggesting that the lens fiber junction contains a unique gene product and potentially different physiological properties

    Modeling of premixing-prevaporizing fuel-air mixing passages

    Get PDF
    The development of a computer program for the analytical prediction of the distribution of liquid and vapor fuel in the premixing-prevaporizing passage by the direct injection method is described. The technical approach adopted for this program is to separate the problem into three parts each with its own computer code. These three parts are: calculation of the two-dimensional or axisymmetric air flow; calculation of the three-dimensional fuel droplet evaporation; and calculation of the fuel vapor diffusion. This method of approach is justified because premixing passages operate at lean equivalence ratios. Hence, a weak interaction assumption can be made wherein the airflow can affect the fuel droplet behavior but the fuel droplet behavior does not affect the airflow
    corecore