62,251 research outputs found

    Hartree-Fock calculations of a finite inhomogeneous quantum wire

    Get PDF
    We use the Hartree-Fock method to study an interacting one-dimensional electron system on a finite wire, partially depleted at the center by a smooth potential barrier. A uniform one-Tesla Zeeman field is applied throughout the system. We find that with the increase in the potential barrier, the low density electrons under it go from a non-magnetic state to an antiferromagnetic state, and then to a state with a well-localized spin-aligned region isolated by two antiferromagnetic regions from the high density leads. At this final stage, in response to a continuously increasing barrier potential, the system undergoes a series of abrupt density changes, corresponding to the successive expulsion of a single electron from the spin-aligned region under the barrier. Motivated by the recent momentum-resolved tunneling experiments in a parallel wire geometry, we also compute the momentum resolved tunneling matrix elements. Our calculations suggest that the eigenstates being expelled are spatially localized, consistent with the experimental observations. However, additional mechanisms are needed to account for the experimentally observed large spectral weight at near k=0k=0 in the tunneling matrix elements.Comment: 10 pages, 14 figure

    Spin-Charge Separation in Two-dimensional Frustrated Quantum Magnets

    Full text link
    The dynamics of a mobile hole in two-dimensional frustrated quantum magnets is investigated by exact diagonalization techniques. Our results provide evidence for spin-charge separation upon doping the kagome lattice, a prototype of a spin liquid. In contrast, in the checkerboard lattice, a symmetry broken Valence Bond Crystal, a small quasi-particle peak is seen for some crystal momenta, a finding interpreted as a restoration of weak holon-spinon confinement.Comment: 4 pages, 6 figure

    Superposition Formulas for Darboux Integrable Exterior Differential Systems

    Get PDF
    In this paper we present a far-reaching generalization of E. Vessiot's analysis of the Darboux integrable partial differential equations in one dependent and two independent variables. Our approach provides new insights into this classical method, uncovers the fundamental geometric invariants of Darboux integrable systems, and provides for systematic, algorithmic integration of such systems. This work is formulated within the general framework of Pfaffian exterior differential systems and, as such, has applications well beyond those currently found in the literature. In particular, our integration method is applicable to systems of hyperbolic PDE such as the Toda lattice equations, 2 dimensional wave maps and systems of overdetermined PDE.Comment: 80 page report. Updated version with some new sections, and major improvements to other

    On a Order Reduction Theorem in the Lagrangian Formalism

    Full text link
    We provide a new proof of a important theorem in the Lagrangian formalism about necessary and sufficient conditions for a second-order variational system of equations to follow from a first-order Lagrangian.Comment: 9 pages, LATEX, no figures; appear in Il Nuovo Cimento

    Phase diagram of geometric d-wave superconductor Josephson junctions

    Full text link
    We show that a constriction-type Josephson junction realized by an epitactic thin film of a d-wave superconductor with an appropriate boundary geometry exhibits intrinsic phase differences between 0 and pi depending on geometric parameters and temperature. Based on microscopic Eilenberger theory, we provide a general derivation of the relation between the change of the free energy of the junction and the current-phase relation. From the change of the free energy, we calculate phase diagrams and discuss transitions driven by geometric parameters and temperature.Comment: 9 pages, 11 figures. Phys. Rev. B, accepte

    Properties of the Scalar Universal Equations

    Full text link
    The variational properties of the scalar so--called ``Universal'' equations are reviewed and generalised. In particular, we note that contrary to earlier claims, each member of the Euler hierarchy may have an explicit field dependence. The Euler hierarchy itself is given a new interpretation in terms of the formal complex of variational calculus, and is shown to be related to the algebra of distinguished symmetries of the first source form.Comment: 15 pages, LaTeX articl

    Anomalous Nernst Effect in the Vortex-Liquid Phase of High-Temperature Superconductors by Layer Decoupling

    Full text link
    Linear diamagnetism is predicted in the vortex-liquid phase of layered superconductors at temperatures just below the mean-field phase transition on the basis of a high-temperature analysis of the corresponding frustrated XY model. The diamagnetic susceptibility, and the Nernst signal by implication, is found to vanish with temperature as (T_c0 - T)^3 in the vicinity of the meanfield transition at T_c0. Quantitative agreement with recent experimental observations of a diamagnetic signal in the vortex-liquid phase of high-temperature superconductors is obtained.Comment: 8 pages, 3 figure

    RELATIONSHIPS BETWEEN MARKET PRICE SIGNALS AND PRODUCTION MANAGEMENT: THE CASE OF FED BEEF

    Get PDF
    The beef industry in the United States consists of several distinct production levels ranging from the cow-calf producer at the lowest level to the final consumer. These sectors face varying levels of profitability, degrees of market power, conflicting goals, and price signals. Environmental regulations involve questions of what costs are involved, who is in a position to pay these costs, and whether market prices are capable of signaling different environmental practices. Understanding the relationships within the beef industry may allow researchers to fine-tune analyses of environmental issues in the beef industry.Beef, BMP, Cattle, Pricing, Livestock Production/Industries, Marketing,

    Effects of antiferromagnetic planes on the superconducting properties of multilayered high-Tc cuprates

    Get PDF
    We propose a mechanism for high critical temperature (T_c) in the coexistent phase of superconducting- (SC) and antiferromagnetic (AF) CuO_2 planes in multilayered cuprates. The Josephson coupling between the SC planes separated by an AF insulator (Mott insulator) is calculated perturbatively up to the fourth order in terms of the hopping integral between adjacent CuO_2 planes. It is shown that the AF exchange splitting in the AF plane suppresses the so-called pi-Josephson coupling, and the long-ranged 0-Josephson coupling leads to coexistence with a rather high value of T_c.Comment: 4 pages including 4 figure

    Two Phase Collective Modes in Josephson Vortex Lattice in Intrinsic Josephson Junction Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Get PDF
    Josephson plasma excitations in the high TcT_c superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} have been investigated in a wide microwave frequency region (9.8 -- 75 GHz), in particular, in magnetic field applied parallel to the abab plane of the single crystal. In sharp contrast to the case for magnetic fields parallel to the c axis or tilted from the abab plane, it was found that there are two kinds of resonance modes, which are split in energy and possess two distinctly different magnetic field dependences. One always lies higher in energy than the other and has a shallow minimum at about 0.8 kOe, then increases linearly with magnetic field. On the other hand, another mode begins to appear only in a magnetic field (from a few kOe and higher) and has a weakly decreasing tendency with increasing magnetic field. By comparing with a recent theoretical model the higher energy mode can naturally be attributed to the Josephson plasma resonance mode propagating along the primitive reciprocal lattice vector of the Josephson vortex lattice, whereas the lower frequency mode is assigned to the novel phase collective mode of the Josephson vortex lattice, which has never been observed before.Comment: 11 pages and 10 figure
    corecore