81,863 research outputs found

    A method for the analysis of the benefits and costs for aeronautical research and technology

    Get PDF
    A relatively simple, consistent, and reasonable methodology for performing cost-benefit analyses which can be used to guide, justify, and explain investments in aeronautical research and technology is presented. The elements of this methodology (labeled ABC-ART for the Analysis of the Benefits and Costs of Aeronautical Research and Technology) include estimation of aircraft markets; manufacturer costs and return on investment versus aircraft price; airline costs and return on investment versus aircraft price and passenger yield; and potential system benefits--fuel savings, cost savings, and noise reduction. The application of this methodology is explained using the introduction of an advanced turboprop powered transport aircraft in the medium range market in 1978 as an example

    Fundamental studies in geodynamics

    Get PDF
    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix

    Vegetative and geologic mapping of the western Seward Peninsula, Alaska, based on ERTS-1 imagery

    Get PDF
    ERTS-1 scene 1009-22095 (Western Seward Peninsula, Alaska) has been studied, partly as a training exercise, to evaluate whether direct visual examination of individual and custom color-composite prints can provide new information on the vegetation and geology of this relatively well known area of Alaska. The vegetation analysis reveals seven major vegetation types, only four of which are described on existing vegetation maps. In addition, the ERTS analysis provides greater detail than the existing maps on the areal distribution of vegetation types. The geologic analysis demonstrates that most of the major rock units and geomorphic boundaries shown on the available geologic maps could also be identified on the ERTS data. Several major high-angle faults were observed, but the zones of thrust faults which are much less obvious

    Sublethal Behavioral and Physiological Effects of the Biomedical Bleeding Process on the American Horseshoe Crab, Limulus polyphemus

    Get PDF
    The hemolymph of the American horseshoe crab, Limulus polyphemus, is harvested from over 500,000 animals annually to produce Limulus amebocyte lysate (LAL), a medically important product used to detect pathogenic bacteria. Declining abundance of spawning Limulus females in heavily harvested regions suggests deleterious effects of this activity, and while mortality rates of the harvest process are known to be 10%–30%, sublethal behavioral and physiological effects are not known. In this study, we determined the impact of the harvest process on locomotion and hemocyanin levels of 28 female horseshoe crabs. While mortality rates after bleeding (18%) were similar to previous studies, we found significant decreases in the linear and angular velocity of freely moving animals, as well as changes in their activity levels and expression of circatidal behavioral rhythms. Further, we found reductions in hemocyanin levels, which may alter immune function and cuticle integrity. These previously unrecognized behavioral and physiological deficits suggest that the harvest of LAL may decrease female fitness, and thus may contribute to the current population decline

    Derivation and evaluation of an approximate analysis for three-dimensional viscous subsonic flow with large secondary velocities

    Get PDF
    An approximate analysis is presented for calculating three-dimensional, low Mach number, laminar viscous flows in curved passages with large secondary flows and corner boundary layers. The analysis is based on the decomposition of the overall velocity field into inviscid and viscous components with the overall velocity being determined from superposition. An incompressible vorticity transport equation is used to estimate inviscid secondary flow velocities to be used as corrections to the potential flow velocity field. A parabolized streamwise momentum equation coupled to an adiabatic energy equation and global continuity equation is used to obtain an approximate viscous correction to the pressure and longitudinal velocity fields. A collateral flow assumption is invoked to estimate the viscous correction to the transverse velocity fields. The approximate analysis is solved numerically using an implicit ADI solution for the viscous pressure and velocity fields. An iterative ADI procedure is used to solve for the inviscid secondary vorticity and velocity fields. This method was applied to computing the flow within a turbine vane passage with inlet flow conditions of M = 0.1 and M = 0.25, Re = 1000 and adiabatic walls, and for a constant radius curved rectangular duct with R/D = 12 and 14 and with inlet flow conditions of M = 0.1, Re = 1000, and adiabatic walls

    Mobile radio alternative systems study, executive summary

    Get PDF
    Present day mobile communication technologies, systems and equipment are described from background in evaluating the concepts generated in the study. Average propagation ranges are calculated for terrestrial installations in each of seven physiographic areas of the contiguous states to determine the number of installations that would be required for nationwide coverage. Four system concepts are defined and analyzed to determine how well terrestrial systems can fulfill the requirements at acceptable costs

    Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    Full text link
    CONTEXT. Stellar populations are the building blocks of galaxies including the Milky Way. The majority, if not all extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, their study is mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. AIMS. This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, i.e. age and metallicity. METHODS. Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, is used to study the properties of the cluster both as a resolved and unresolved stellar population. The unresolved stellar population is analysed using the Hα\alpha equivalent width as an age indicator, and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT, is used to infer these properties from the integrated spectrum. Independently, the resolved stellar population is analysed using the color-magnitude diagram (CMD) for age and metallicity determination. As the SSP model represents the unresolved stellar population, the derived age and metallicity are put to test whether they agree with those derived from resolved stars. RESULTS. The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations.Comment: 9 pages, 5 figures, accepted to A&
    corecore