2,086 research outputs found

    The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD came

    Get PDF
    Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, “bucket” detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode

    Communities and colleges: post-compulsory education in Northern Australia

    Get PDF

    A Closed Class of Hydrodynamical Solutions for the Collective Excitations of a Bose-Einstein Condensate

    Full text link
    A trajectory approach is taken to the hydrodynamical treatment of collective excitations of a Bose-Einstein condensate in a harmonic trap. The excitations induced by linear deformations of the trap are shown to constitute a broad class of solutions that can be fully described by a simple nonlinear matrix equation. An exact closed-form expression is obtained for the solution describing the mode {n=0, m=2} in a cylindrically symmetric trap, and the calculated amplitude-dependent frequency shift shows good agreement with the experimental results of the JILA group.Comment: RevTex, 4 pages, 1 eps figure, identical to the published versio

    Diachronic Aspects of Russianisms in Siberian Turkic

    Get PDF
    Proceedings of the Twenty-First Annual Meeting of the Berkeley Linguistics Society: General Session and Parasession on Historical Issues in Sociolinguistics/Social Issues in Historical Linguistics (1995

    Nonequilibrium dynamics of random field Ising spin chains: exact results via real space RG

    Full text link
    Non-equilibrium dynamics of classical random Ising spin chains are studied using asymptotically exact real space renormalization group. Specifically the random field Ising model with and without an applied field (and the Ising spin glass (SG) in a field), in the universal regime of a large Imry Ma length so that coarsening of domains after a quench occurs over large scales. Two types of domain walls diffuse in opposite Sinai random potentials and mutually annihilate. The domain walls converge rapidly to a set of system-specific time-dependent positions {\it independent of the initial conditions}. We obtain the time dependent energy, magnetization and domain size distribution (statistically independent). The equilibrium limits agree with known exact results. We obtain exact scaling forms for two-point equal time correlation and two-time autocorrelations. We also compute the persistence properties of a single spin, of local magnetization, and of domains. The analogous quantities for the spin glass are obtained. We compute the two-point two-time correlation which can be measured by experiments on spin-glass like systems. Thermal fluctuations are found to be dominated by rare events; all moments of truncated correlations are computed. The response to a small field applied after waiting time twt_w, as measured in aging experiments, and the fluctuation-dissipation ratio X(t,tw)X(t,t_w) are computed. For (ttw)twα^(t-t_w) \sim t_w^{\hat{\alpha}}, α^<1\hat{\alpha} <1, it equals its equilibrium value X=1, though time translational invariance fails. It exhibits for ttwtwt-t_w \sim t_w aging regime with non-trivial X=X(t/tw)1X=X(t/t_w) \neq 1, different from mean field.Comment: 55 pages, 9 figures, revte

    Relevance Grounding for Planning in Relational Domains

    Full text link
    Abstract. Probabilistic relational models are an efficient way to learn and represent the dynamics in realistic environments consisting of many objects. Autonomous intelligent agents that ground this representation for all objects need to plan in exponentially large state spaces and large sets of stochastic actions. A key insight for computational efficiency is that successful planning typically involves only a small subset of relevant objects. In this paper, we introduce a probabilistic model to represent planning with subsets of objects and provide a definition of object relevance. Our definition is sufficient to prove consistency between repeated planning in partially grounded models restricted to relevant objects and planning in the fully grounded model. We propose an algorithm that exploits object relevance to plan efficiently in complex domains. Empirical results in a simulated 3D blocksworld with an articulated manipulator and realistic physics prove the effectiveness of our approach.

    Noise Can Reduce Disorder in Chaotic Dynamics

    Full text link
    We evoke the idea of representation of the chaotic attractor by the set of unstable periodic orbits and disclose a novel noise-induced ordering phenomenon. For long unstable periodic orbits forming the strange attractor the weights (or natural measure) is generally highly inhomogeneous over the set, either diminishing or enhancing the contribution of these orbits into system dynamics. We show analytically and numerically a weak noise to reduce this inhomogeneity and, additionally to obvious perturbing impact, make a regularizing influence on the chaotic dynamics. This universal effect is rooted into the nature of deterministic chaos.Comment: 11 pages, 5 figure

    Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method

    Get PDF
    Uptake (or negative flux) of nitrous oxide (N2O)in agricultural soils is a controversial issue which has proved difficult to investigate in the past due to constraints such as instrumental precision and methodological uncertainties. Using a recently developed high-precision quantum cascade laser gas analyser combined with a closed dynamic chamber, a well-defined detection limit of 4 μg N2O-N m could be achieved for individual soil flux measurements. 1220 mea- surements of N2O flux were made from a variety of UK soils using this method, of which 115 indicated uptake by the soil (i.e. a negative flux in the micrometeorological sign convention). Only four of these apparently negative fluxes were greater than the detection limit of the method, which suggests that the vast majority of reported negative fluxes from such measurements are actually due to instrument noise. As such, we suggest that the bulk of negative N2O fluxes reported for agricultural fields are most likely due to limits in detection of a particular flux measurement methodology and not a result of microbiological activity consuming atmospheric N2O

    Production of a Fermi gas of atoms in an optical lattice

    Full text link
    We prepare a degenerate Fermi gas of potassium atoms by sympathetic cooling with rubidium atoms in a one-dimensional optical lattice. In a tight lattice we observe a change of the density of states of the system, which is a signature of quasi two dimensional confinement. We also find that the dipolar oscillations of the Fermi gas along the tight lattice are almost completely suppressed.Comment: 4 pages, 4 figures, revised versio
    corecore