-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by University of Strathclyde Institutional Repository

I._‘.
Unlversltyﬂ@

Strathclyde
Glasgow

Strathprints Institutional Repository

Long, D. and Kautz, H.A. and Selman, B. and Bonet, B. and Geffner, H. and Koehler, J. and Brenner,
M. and Hoffmann, J. and Rittinger, F. and Anderson, C.R. and Weld, D.S. and Smith, D.E. and Fox,
M. (2000) The AIPS-98 planning competition: competitors’ perspectives. Al Magazine, 21 (2). pp.
13-33. ISSN 0738-4602

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

https://core.ac.uk/display/9015087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

The AIPS-98 Planning Competition: Competitors’
Perspectives

Blackbox team: Henry Kautz'and Bart Selman?
HSP team?® Blai Bonet and Héctor Geffner
IPP team?* Jana Koehler, Michael Brenner,
Jorg Hoffmann and Frank Rittinger
SGP team?® Corin R. Anderson. Daniel S. Weld and David E. Smith
STAN team® Maria Fox and Derek Long

Contributions editor: Derek Long

April 10, 1999

1 Introduction

The international conference, Artificial Intelligence Planning Systems, held
at Carnegie Mellon University, Pittsburgh in June 1998 (AIPS-98) played
host to the first world planning competition, in which competitors were
invited to come and compete on a collection of domains and associated
problems, sight-unseen, using whatever planning technology they wished.
Tracks were offered for STRIPS, ADL and HTN planning, but in the event
only STRIPS and ADL were entered. Indeed, ADL saw only two competi-
tors: IPP [17] and SGP [1], with IPP demonstrating a convincingly superior

'AT&T Shannon Laboratory. kautz@research.att.com

2Department of Computer Science, Cornell University. selman@cs.cornell.edu

“Institute for Computer Science, Albert Ludwigs University, Am Flughafen 17, 79110
Freiburg, Germany, koehler@informatik.uni-freiburg.de

3Depto. de Computacién, Universidad Simén Bolivar, Aptdo. 89000, Caracas 1080-A,
Venezuela. {bonet,hector}@usb.ve

5{corin, weld}@cs.washington.edu and de2smith@ptolemy.arc.nasa.gov

5Department of Computer Science, University of Durham, UK.
{Maria.Fox,D.P.Long}@dur.ac.uk

performance over SGP in a single round playoff. The STRIPS track origi-
nally attracted some 9 or 10 declarations of intent to take part. This paper
gives an account of the competition as seen by the competitors who actually
arrived in Pittsburgh and took part in the two tracks.

Competitions as a way to evaluate and to promote progress in various
fields have precedents, such as the MUC (Message Understanding Com-
petition) series, the TREC (Text Retrieval Competition) competitions, the
Turing Competitions and others. These have stimulated work, but they also
represent a serious investment of effort for the competition organizers and
competitors. It is a formidable task to create a collection of tasks which is
both realistically within the reach of the existing technology and yet which
represents an adequate challenge and which points the way for the field to
develop. Administrative problems represent a huge overhead to this task: a
common language must be developed that allows problems to be specified
and results evaluated, scoring mechanisms must be determined and the en-
vironment must be selected and competitors forewarned. Tribute should be
paid to Drew McDermott for the role he played in almost single-handedly
executing all these tasks, with support from the competition committee.

For the competitors, the competition represents a challenge to the ro-
bustness of their software, and demands work in meeting the specifications
for both input and output formats, while continuing to develop and enhance
the basic functionality of their systems. The development of PDDL [23] as
the common language for the competition problem specifications was an
important step in the progress of the competition. A challenge to the com-
petitors was to adapt to the many minor changes in this language as it
steadily stabilized. Another important problem was anticipating the de-
mands of the competition domains. All of the planners that eventually
competed are domain-independent planners that require little or no manual
guidance in selecting run-time behavior, but the performance of all of them
can be dramatically affected by the design of the encoding of the domain
and problem specifications. The criteria by which success was to be judged
were also volatile: tradeoffs between the planning time and the optimality
of the plan produced were a controversial balancing act. Optimality was de-
termined to be measured purely by the number of steps in the plan for the
STRIPS track - so planners producing optimal parallel plans might well find
themselves significantly outperformed by planners concentrating on sequen-
tial plan optimality. Furthermore, the selection of domains to be used in the
competition is hard. All of the competitors have some collection of favored
domains which showcase the characteristics of their planners. In principle

all competitors had the opportunity to propose domains for use, but the
constraints on the time available for the competition made it impossible to
use all of these.

These various challenges thinned the field so that the competition even-
tually hosted four STRIPS planners and two ADL planners (IPP taking part
in both tracks). It was apparent that there were several others who would
have liked to have participated but were unable to meet the input and out-
put criteria within the timescales that were imposed by the organization of
the competition.

2 The Competing Planners

The competition highlighted several facets of the current state of the plan-
ning research field. Firstly, by comparison with even a couple of years ago,
the technology has advanced dramatically in terms of the size of problems in
standard benchmark domains which planners can realistically be expected to
handle. All of the planners in the competition were solving some instances of
problems in times measured in milliseconds, including non-trivial instances.
Secondly, the collection of planners which are sufficiently robust for release
into the general research community, require no special purpose additional
domain encoding beyond STRIPS or ADL and which can tackle significant
instances in reasonable time is still small. The qualifications are important,
however, since there are clearly many more planners actively being worked
on which are either still insufficiently robust to be entered into a compe-
tition event, or else require too much careful encoding of their domains to
be able to compete automatically across large numbers of problems, sight
unseen. It is to be hoped that this situation changes as the competition
is repeated in future years, with a widening of the field and broadening
of the range of technology being exposed. This latter point is particularly
poignant, since, at AIPS-98, three of the five planners involved were directly
built on GRAPHPLAN [2] (IPP, SGP and STAN), one exploited GRAPHPLAN
technology (blackbox) and only one was independent of GRAPHPLAN in
every way (HSP).

Interestingly, all five planners used full instantiation of actions as a pre-
Iude to search and this explains, in part, the difficulties all of the planners
experienced with problems which involved huge numbers of ground opera-
tor instances. This point is further discussed in Section 3. It is unfortunate
that no partial-order planning strategy was entered to offer a comparison of

performance. Some informal experiments with Prodigy [5] during the com-
petition suggested that it might have performed significantly better than the
other planners in some domains, but was completely outperformed in oth-
ers. This pattern hints at one of the most interesting issues the competition
raised, which is discussed in more detail in Section 3: different planning tech-
nologies, despite being domain independent, are actually highly sensitive to
both domain and problem instance in determining actual performance.

The remainder of this section is devoted to a more detailed examination
of the individual planners that entered the competition.

2.1 Blackbox

It has often been observed that the classical Al planning problem (that is,
planning with complete and certain information) is a form of logical de-
duction. Because early attempts to use general theorem provers to solve
planning problems proved impractical, research became focused on special-
ized planning algorithms. However, the belief that planning required such
specialized reasoning algorithms was challenged by the work of Kautz and
Selman on planning as propositional satisfiability testing [15, 16]. SATPLAN
showed that a general propositional theorem prover could be competitive
with some of the best specialized planning systems. The success of SAT-
PLAN can be attributed to two factors:

e The use of a logical representation that has good computational prop-
erties. Both the fact that SATPLAN uses propositional logic instead
of first-order logic, and the particular conventions we suggested for
representing time and actions, are significant. Differently declarative
representations that are semantically equivalent can have quite distinct
computational profiles.

e The use of powerful new general reasoning algorithms such as Walk-
sat [29]. Many researchers in different areas of computer science devise
new algorithms and implementations for SAT testing each year, and
freely share ideas and source code. As a result, at any point in time the
best general SAT engines tend to be faster (in terms of raw inferences
per second) than the best specialized planning engines.

An approach that shares a number of features with the SATPLAN strategy
is the GRAPHPLAN system, developed independently by Blum and Furst [2].
Comparisons with SATPLAN show that neither algorithm is strictly superior.

For example, SATPLAN is faster on a complex Logistics domain, they are
comparable on the Blocks World, and on several other domains GRAPHPLAN
is faster.

GRAPHPLAN bears an important similarity to SATPLAN: both systems
work in two phases, first creating a propositional structure (in GRAPHPLAN,
a plan graph, in SATPLAN, a CNF wff) and then searching that structure.
The propositional structure corresponds to a fixed plan length, and the
search reveals whether a plan of that length exists. Furthermore, in Kautz
and Selman [16] it is shown that the plan graph has a direct translation to
CNF, and that the form of the resulting formula is very close to the original
conventions for SATPLAN. It is hypothesized that the differences in perfor-
mance of the two systems can be explained by the fact that GRAPHPLAN
uses a better algorithm for instantiating the propositional structure, while
SATPLAN uses more powerful search algorithms.

SATPLAN fully instantiates a problem instance before passing it to a
simplifier and a solver. By contrast, GRAPHPLAN interleaves plan graph
instantiation and simplification. Furthermore, GRAPHPLAN employs a pow-
erful planning-specific simplification algorithm. The algorithms corresponds
to a limited application of resolution where one of the clauses is restricted
to be binary and negative. The use of this rule in GRAPHPLAN is called
mutex computation, because it is used to determine that pairs of actions or
pairs of facts are mutually exclusive. The set of mutexes is used both to
prune nodes from the graph during instantiation and to prune branches of
the search tree.

These observations have led to the creation of a new system that com-
bines the best features of GRAPHPLAN and SATPLAN. This system, called
blackbox, works in three phases:

1. A planning problem (specified in a standard STRIPS notation) is con-
verted to a plan graph;

2. The plan graph is converted to a CNF wiff;
3. The wif is solved by any of a variety of fast SAT engines.

Figure 1 illustrates the translation of a plan graph to axiom schemas.
The plan graph is layered from left to right, moving from the past to the
future. Solid arrows indicate precondition or effect links, and the dashed
line indicates a mutex relationship between actions. The first schema states
that a fact implies the disjunction of the actions that add or maintain it

Figure 1: This fragment of a plan graph translates to the axiom schemas

Fact D Actl V Act2
Actl D Prel A Pre2
—Actl V —Act2

(a kind of frame axiom). The second states that an action implies its pre-
conditions. The third states that mutex actions cannot occur at the same
time slot. (Non-mutex actions may occur in parallel.) Together with a set
of unit clauses that assert that the goals hold in the final (rightmost) layer,
the translation guarantees that any model of the axioms corresponds to a
solution to the plan graph, and vice-versa.

The wff generated from the plan graph can be considerably smaller than
one generated by translating STRIPS operators to axioms in the most direct
way, as was done by the earlier MEDIC system of Ernst, Millstein, and
Weld [4]. Furthermore, the plan graph’s computed mutex relationships can
be directly translated into negative binary clauses, which can make the
formula easier to solve by many kinds of SAT engines.

The competition version of blackbox included the local-search SAT
solver Walksat and the systematic SAT solver satz [20], as well as the original
GRAPHPLAN engine (that searches the plan graph instead of the CNF form).
In order to have robust coverage over a variety of domains, the system can
employ a schedule of different solvers. For example, it can run GRAPHPLAN
for 30 seconds, then Walksat for 2 minutes, and if still no solution is found,
satz for 5 minutes.

The blackbox system introduces new SAT technology as well, namely
the use of randomized complete search methods. As shown in Gomes, Selman,
and Kautz [10], systematic solvers in combinatorial domains often exhibit
a “heavy tail” behavior, whereby they get “stuck” on particular instances.

Adding a small amount of randomization to the search heuristic and rapidly
restarting the algorithm after a fixed number of backtracks can dramatically
decrease the average solution time, often from hours to seconds.

This randomization/restart technique was applied to the version of satz
used by blackbox. The variable-choice heuristic for satz chooses to split
on a variable that maximizes a particular function of the number of unit
propagations that would be performed if that variable were chosen (see [20]
for details). The blackbox version, satz-rand, randomly selects among the
set of variables whose scores are within 40% of the best score.The solver
schedule used in the competition was to run the GRAPHPLAN engine for
20 seconds, then to convert the problem to CNF and run satz-rand for 10
restarts with a cutoff of 100 backtracks. Note that no one cutoff value is ideal
for all domains. One way to address the problem is to specify a sequence of
increasing cutoff values in the solver schedule.

The newest version of blackbox includes an additional solver, relsat
[13] based on dependency-directed backtracking, as well as a technique for
reducing the size of the CNF encodings by suppressing the generation of
clauses that are logically redundant.

2.2 HSP: Heuristic Search Planner

HSP is a planner based on the ideas of heuristic search. Heuristic search
algorithms perform forward search from an initial state to a goal state using
a heuristic function that provides an estimate of the distance to the goal.
The 8-puzzle is the standard example of heuristic search and is treated
in most Al textbooks [25, 26]. The main difference between the 8-puzzle
and the approach to planning adopted in HSP is in the heuristic function.
While in domains specific tasks like the 8-puzzle the heuristic function is
given (for example, as the sum of the Manhattan distances); in domain
independent planning, it has to be derived from the high-level representation
of the actions and goals.

2.2.1 Heuristic

A common way to derive an heuristic function h(s) for a problem P is
by relaxing P into a simpler problem P’ whose optimal solution can be
computed efficiently. Then, the optimal cost for solving P’ can be used as
an heuristic for solving P [26]. For example, if P is the 8-puzzle, P’ can
be obtained from P by allowing the tiles to move into any neighbouring

position. The optimal cost function of the relaxed problem is precisely the
Manhattan distance heuristic.

In STRIPS planning, the heuristic values for a planning problem P
can be obtained by considering the “relaxed” planning problem P’ in which
all delete lists are ignored. In other words, P’ is like P except that delete
lists are assumed empty. As a result, actions may add new atoms but not
remove existing ones, and a sequence of actions solves P’ when all goal
atoms have been generated. As in recent planners such as SATPLAN [16] and
GRAPHPLAN |[2], action schemas are assumed to have been replaced by their
ground instances, and variables are not dealt with.

It is not difficult to show that for any initial state s, the optimal cost
h'(s) to reach a goal in P’ is a lower bound on the optimal cost h*(s) to
reach a goal in the original problem P. The heuristic function h(s) could
therefore be set to h'(s) and obtain an informative and admissible (non-
overestimating) heuristic. The problem, however, is that computing A'(s)
is still NP-hard.® Therefore, an approximation is used: the heuristic values
h(s) are set to an estimate of the optimal values h/(s) of the relaxed problem.
These estimates are computed as follows.

Starting with sp = s and 7 = 0 s; is expanded into a (possibly) larger
set of atoms s;11 by combining the atoms in s; with the atoms that can
be generated by the actions whose preconditions hold in s;. Every time an
action that asserts an atom p is applied, a measure g,(p) is updated that is
intended to estimate the difficulty (number of steps) involved in achieving p
from s. For atoms p € s, this measure is initialized to 0, while for all other
atoms gs(p) is initialized to co. Then when an action with preconditions
C =ry,r9,..,my that asserts p is applied, g;(p) is updated as:

gs(p) :=min [gs(p) , 1+ Y gs(ri)]

i=1,n

The expansions and updates continue until these measures do not change.
When all preconditions involve a single atom, this is a Bellman-Ford proce-
dure for computing costs in a graph from a given set of sources. The nodes
are the atoms, the sources are the atoms p such that gs(p) = 0, and edges
p — g with cost 1 exist when an action with precondition p asserts q.

The heuristic function h(s) used by HSP is defined then as:

h(s) € S g, (p)

peEG

8This was first pointed out by Bernhard Nebel.

where G stands for the set of goal atoms. This definition assumes, like
decompositional planners, that subgoals are independent. The added value
of the heuristic approach is that subgoals are weighted by a “difficulty”
measure that makes it possible to regard certain decompositions as better
than others. A result of this assumption is that the heuristic function A(s)
is not admissible. On the other hand it is often quite informative and can
be computed reasonably fast.

2.2.2 Algorithm

The heuristic function defined above allows us to deal with any STRIPS
planning problem as a problem of heuristic search. This means that planning
could be carried out using algorithms such as A*. A*, however, might take
exponential memory and approaches the goal too cautiously. In HSP, where
the heuristic is recomputed from scratch in every node, it is necessary to
use algorithms that can get to the goal with as few evaluations as possible.
For this reason HSP uses a form of hill-climbing search. Surprisingly, hill-
climbing works very well in many problems, and often produces good plans
very fast. Sometimes, however, it gets stuck in local minima. In such cases,
it is convenient to proceed with the search until a number of such impasses
has been encountered, restarting the search if necessary, up to some specified
maximum number of times. The algorithm used in the competition is a
variation of this idea that also uses memory to keep track of the states that
are visited. Current effort is directed towards identifying ways to speed up
the evaluation of the heuristic, so that more systematic search algorithms
could be used.

2.2.3 Implementation

HSP is implemented in C. Likewise, a preprocessor converts any STRIPS
problem in PDDL into a C program that is then compiled, linked, assembled
and executed. This usually means a time overhead in the order of a second
or two in small planning problems but pays off in larger ones.

2.2.4 Related Work

HSP is based on the planner reported in [3]. This planner, called ASP, uses
the same heuristic function but a different search algorithm based on Korf’s
LRTA* [18] designed for real-time planning.

An independent proposal that also formulates planning as heuristic search
is McDermott’s [22]. His system, UNPOP, also searches forward from the
initial state to the goal but derives the heuristic values from a regression
analysis. The resulting heuristic estimates, however, do not appear to be as
informative, and the range of problems that can be solved and the quality of
the solutions that are found do not appear to be as good as those obtained
by HSP.

2.2.5 Current Work

The bottleneck in HSP is the computation of the heuristic values which are
obtained afresh in every new state. Currently work is exploring methods that
avoid this recomputation and that can speed up the algorithm considerably.
At the same time, the quality of the resulting plans can be improved by
continuing the search in a “branch and bound” manner after finding the
first solution. Further details and code can be found at the HSP website®.

2.3 IPP

The IPP planning system extends the fundamental use of planning graphs
underlying GRAPHPLAN [2] to include conditional effects in actions [17].
Based on the original GRAPHPLAN code, several extensions and improve-
ments have been made:

1. Changes in data structures, and in particular in the way that informa-
tion about exclusive pairs is handled, have been made in the C source
code of IPP 3.3. This has lead to a significant speed up and important
reduction in memory consumption. For example, IPP 3.1. solved the
Towers of Hanoi problem with 8 discs in 93 minutes using 900 Mbytes
memory on a Sun Ultra I/170. IPP 3.3. solves the same problem in
8 minutes using 227 Mbytes. Nevertheless, the STAN planner used
even more efficient data structures and saves several of the compu-
tations that IPP unnecessarily does repeatedly. These techniques are
currently incorporated into IPP 3.4 and reduce memory consumption
to 9 Mbytes and runtime to 40 s for this example.

2. An improved instantiation procedure determines the valid ground in-
stances of actions by taking into account so-called inertia, i.e., facts

9ht'l'.p ://www.ldc.usb.ve/~hector

10

domain problem

PDDL parser
PDDL preprocessing

RIFO meltalstrategy

IPP 3.3

PDDL output

plan

Figure 2: IPP architecture

that are true in all states. For example, in the Grid domain used in
the competition only those instances of move actions are generated for
which connected relations are found in the problem description.

3. A complete subset test [12] replaces the original incomplete test used
in GRAPHPLAN and helps to identify more unsolvable goal sets without
performing any search.

To run IPP in the competition, a parser for PDDL was developed us-
ing flex and bison. Since IPP took part in both the STRIPS and ADL
tracks, a preprocessing phase based on [8] is included in the parsing process
that translates PDDL first-order formulas into the disjunctive normal form
required by IPP. 10,

Based on RIFO [24], a meta-strategy has been “wrapped” around the
planner, which is activated when two threshold parameters, the number
of objects and the number of ground actions, are exceeded by a planning
problem. These parameters can be set by hand.

RIFO has been developed to cope with the problem of irrelevant in-
formation in planning graphs. When building graphs exhaustively starting
in the initial state, a GRAPHPLAN-based planner will add lots of facts and
actions that are totally irrelevant in solving the planning problem at hand.

OFyrther information about IPP can be found in the IPP home page
http://www.informatik.uni-freiburg.de/~koehler /ipp.html

11

By building a backchaining tree, RIFO can exclude irrelevant information at
various degrees of strength, but at the price of incompleteness: sometimes
too many actions are ruled out making the planning problem unsolvable.
The meta strategy runs RIFO on the problem input using the strongest re-
duction heuristic, which selects one cardinality-minimal set of initial facts
and objects and only those ground actions that were used in the backchain-
ing tree from the goals to the initial state. If IPP determines the reduced
problem to be unsolvable, which it usually does very quickly, because of the
effective termination test, the search space is enlarged by applying RIFO
again but using a weaker heuristic, restoring all the previously excluded ac-
tions, which use objects that are potentially relevant. If IPP still cannot
solve the problem, the original search space is restored to retain complete-
ness of the planner. In the worst case, this leads to some overhead if both
RIFO heuristics turn a solvable planning problem into an unsolvable one or
if an unsolvable problem is investigated.

2.3.1 Handling of Conditional Effects in IPP

IPP represents conditional effects directly in planning graphs and also prop-
agates mutual exclusion relationships between facts occurring in conditional
effects and their effect conditions. But it does not extend GRAPHPLAN’s
notion of interference between actions. This has attracted some criticism in
[1] where such a propagation of mutex relations over actions is proposed.

The approach in the SGP system described in [1] relies on the “factored
expansion” of actions. This means that each action is split into its separate
conditional effects, each with the same preconditions as the original action,
and each with their own effect conditions as effects. All facts are made
conditional; that is, unconditional effects have an empty effect condition.
This is almost identical to the representation of effects in IPP where each
effect points to its effect condition, while the unconditional effect points
to the empty effect condition. However, actions in IPP are still treated
as atomic units, while SGP creates “components” similar to GRAPHPLAN’S
STRIPS actions that represent each conditional effect in the graph. This
opens the possibility to mark component nodes as exclusive, which is claimed
to lead to much better performance of a planner.

A careful analysis of the SGP induced mutez relations that are calculated
between components reveals that they do not lead to any search space reduc-
tion when compared to the approach that IPP uses. Consider the following
example with the two actions

12

HII =] [][]

Figure 3: Representation of Conditional Effects in IPP compared to SGP.

01:T 02:1
p=vz T =z
p,g=>ef

Figure 3 shows the different representations in both planners. IPP keeps
a single action node o; that has three facts as conditional effects, but no
precondition. The effect nodes point to their effect conditions. SGP splits 0q
into two component nodes o1, and 01,. Each of them has preconditions and
unconditional effects and can therefore be considered as a STRIPS action.

In IPP the actions are non-exclusive because only the conditional effect
of 0 interferes with 0. Consequently, the planner would consider them as
a valid choice to reach a goal set.

In SGP, the components 01, and 09 are mutually exclusive because of
their inconsistent effects, which are no longer conditional. In order to be
able to propagate mutex relations over components, SGP tests whether one
component induces another component. In the example, both components
01, and oy induce each other: the precondition of 01, implies the precondi-
tion of 014, therefore 01 induces 014,. The precondition g of 01, cannot be
prevented in the graph because —g is not contained in the fact level, there-
fore 014 induces 01p. This means, whenever one component is selected to
achieve a goal, the other must be executed as well. Because of the induced
relation between the two components, 0s is also made exclusive to 015, SO an
induced mutez relation is additionally established by SGP.

Now let us assume that the goals are —z,e, f. SGP fails immediately
because no non-exclusive set of components can be found to achieve the
goals. IPP selects the two action nodes and constructs the new goal set
t,p,q from preconditions and the effect conditions of selected conditional

13

effects. Then it checks for conflicts of conditional effects and finds that o1
has a conditional effect x that is inconsistent with the goal —z and therefore
this effect has to be prevented in the state where the action is executed.
The only way of doing this, is to add —p to the goal set, confronting the
corresponding effect condition. But this makes the goal set inconsistent and
therefore IPP fails on this selection before it enters any search at all.

The Movie domain from the planning competition has been designed to
exhibit the property of induced mutex relations. However, in this domain
IPP 3.3 was able to detect that the effect condition of the single conditional
effect that is contained in the actions in this domain comprises inertia only.
Consequently, the inertia are removed and the conditional effect becomes
unconditional. Thus, IPP derives additional mutex information and out-
performed SGP in the competition in this domain. A joint discussion with
Weld and Anderson led to a revised Movie domain in which no inertia can
be removed by IPP 3.3 (see the description of SGP below). With this re-
vised action set, IPP is quite slow because almost no mutex relations can be
derived and subset memoization fails completely in reducing search because
a redundant parameter in all get-operators yields many irrelevant action
instances. When using RIFO as a preprocessor to filter out all irrelevant
information, IPP outperforms SGP again.

It is an open question which of the techniques is better than the other
one. In general one can say that induced mutex relations seem to be very
rare: there is no other domain in any current benchmark sets, other than
the Movie domain, where these relations seem to occur or offer an impor-
tant advantage. Besides this, the Movie domain has been solely designed
with the purpose to prove the usefulness of SGP’s action component rep-
resentation and does not appear to be very natural. On the other hand,
removal of inertia and irrelevants seem to be more natural techniques and
both phenomena occur quite frequently in planning domains.

2.4 SGP

Sensory Graphplan (SGP) is a sound, complete planner based on Blum and
Furst’s Graphplan. SGP includes support for conditional effects, universal
and existential quantification, uncertainty, and sensing actions. SGP was
a participant in the ATPS-98 planning competition, competing in the ADL
track. SGP was the only planner written in Lisp to enter the competition,
and, despite the performance limitations from the language, competed well.
In this section, we discuss the features that SGP supports, how SGP’s algo-

14

rithms work, and SGP’s performance in the ATPS-98 planning competition.

Sensory Graphplan includes many features that would be expected in a
state-of-the-art planner: support for ADL [27], including conditional effects,
universal and existential quantification, and typing; ability to read domain
and problem descriptions in PDDL [23]; and some performance optimiza-
tions. SGP also has a number of features that set it apart from the other
Graphplan-based planners. These unique features, described below, are fac-
tored expansion for handling conditional effects and the ability to handle
uncertainty and sensing actions. SGP is written in well-documented Lisp
code and can be downloaded from SGP’s homepage!!). SGP continues to
be supported by the University of Washington, with new bug fixes and new
releases being produced as appropriate.

2.4.1 Factored Expansion of Conditional Effects

Many of ADL’s expressive features are easy to implement in Graphplan, but
handling conditional effects is surprisingly tricky. Conditional effects allow
the description of a single action with context-dependent effects. The basic
idea is simple: we allow a special when clause in the syntax of action effects.
When takes two arguments, an antecedent and a consequent; execution of the
action will have the consequent’s effect just in the case that the antecedent
is true immediately before execution (much like the action’s precondition
determines if execution itself is legal). And this is exactly the reason why
handling actions with conditional effects is tricky — because the outcomes of
the actions depend on the state of the world when the action is executed.
Factored expansion was first described in [1], where it was compared to
full expansion [8] and IPP’s [17, 24] condition effects handling method. The
idea behind factored expansion is two fold. First, all actions that contain
conditional effects are factored into components, with a single effect (condi-
tional or unconditional) in each component. Each component can then be
treated, more or less, just like a STRIPS action. Second, when the com-
ponents are being examined for graph expansion and backtracking search,
the interaction between components from the same action is considered. In
particular, there is the new concept of component induction: component C),
induces Cy, at level ¢ if it is impossible to execute C,, without executing C}.
Component induction leads to changes in both the Graphplan mutual
exclusion (mutex) rules and in how the backtracking search for a solution

11ht'l'.p ://www.cs.washington.edu/research/projects/ai/wuw/sgp.html

15

proceeds. The change to the mutex rules is the addition of a new rule
that can identify more mutexes: Two components C,, and C), at level ¢ are
mutex if there exists a third component C), that is mutex with C,,, and Cj,
is induced by C,, at level i. The change to the backtracking search requires
that, when a component is selected to establish a goal, all other components
from the same action instance must also be considered.

An example of a domain where the factored expansion approach shows
its strength is the Movie domain'2. The goal of the Movie domain is to
collect snacks and then watch a movie. Before the movie can be “watched”,
the movie must be rewound and the VCR’s counter must be set to zero.
Consider what the planning graph looks like after one level has been built:
the VCR’s counter can be reset, the tape can be rewound, and snacks can
be fetched. The key thing, however, is that the actions to rewind the movie
and to reset the VCR’s counter are mutex only if their conditional effects are
considered. The IPP method of handling conditional effects does not find
this mutex, and thus IPP must perform an exhaustive search of the planning
graph to determine that no plan yet exists.

SGP, on the other hand, can identify the induced mutex between the
two actions. Thus, SGP immediately knows that no plan yet exists, and can
thus proceed to the next planning graph level.

2.4.2 TUncertainty and Sensing Actions

The second novel feature in SGP is its ability to deal with uncertainty and
sensing actions (this work is detailed in [32] and [33]). Although this part
of SGP wasn’t used at the ATPS-98 planning contest, we discuss it here in
some detail because it was the motivation for our work on SGP and is the
characteristic that distinguishes SGP from the other planners.

Classical planners assume complete knowledge of the world at plan time,
and assume that the outcome of actions is certain. Although this assumption
simplifies the planning process, it is an unrealistic one. SGP relaxes the
assumption that the agent knows the state of the entire world a priori.

The first step in relaxing this assumption is to allow the initial state
to include propositions whose truth values are uncertain (either T or F).
Internally, SGP represents this sort of uncertainty by keeping track of each
possible world. For example, if both propositions P and Q are uncertain,
then there are four possible worlds: PAQ, PA —-Q, =P A Q, =P A —=Q. For

2The Movie domain was originally distributed with PDDL. A revised version of the
domain is available in the SGP distribution.

16

each possible world, SGP builds and maintains a separate planning graph.
This task is complicated by the fact that, because of conditional effects, an
action’s outcome may be different depending upon the world it is executed
in. It should be noted here that SGP makes the assumption that an uncer-
tain proposition may be T or F but does not make any assumptions about
probabilities (SGP simply records that a proposition is uncertain, and does
not associate a numerical weight with each possibility).

The second step in relaxing the complete knowledge assumption is to
limit the agent’s observational powers to explicit sensing actions. Sensing
actions are actions in the domain whose effects include a special sense
statement. Sense statements are used to let the agent query the world
for the truth value of a proposition. Based on the sensed truth value, the
agent can then refine the subset of possible worlds it is in (for example, if
a proposition P is sensed to be T, then the agent knows that it is in one of
the possible worlds in which P is T).

Given the set of planning graphs (one for each possible world) and the
set of actions, including sensing actions, SGP builds a plan that will achieve
the goals in all possible worlds. To guarantee success in each possible world,
the plan may include actions that are to be executed only in some of the
possible worlds. Thus, the plan may have branch points contingent on the
consequences of sensory actions. The plan is a DAG, with the possibility of
branches rejoining with each other. The contingencies in the plan are based
on which possible world the agent is in at plan execution time. To resolve
which possible world the agent is in, the results of the sensing actions are
used. An important feature of SGP is that the planner determines exactly
which sensing actions need to be taken to resolve the uncertainty. There are
two important outcomes of this point. First, the planner does not assume
that the agent has full observational power. Instead, SGP allows only the
terms sensed by the sensing actions to be used in resolving uncertainty.
Second, the agent does not have to resolve exactly which possible world it
is in, but rather which of a set of possible worlds it is in. This distinction
is important in that, with SGP, the agent needs not necessarily resolve all
the uncertainty, but simply “enough”.

2.4.3 SGP in the AIPS-98 Competition

SGP made its first public debut at the ATPS-98 planning competition. The
original purpose of SGP was as a research vehicle for the exploration of
conditional effects and planning under uncertainty, so we did not expect

17

to pose a serious competition to other, heavily optimized planners. The
planning competition demonstrated many specific strengths and weaknesses
of our system, the details of which are discussed below.

One of the major features of SGP is it’s identification of induced mu-
texes in factored expansion. In [1], we showed the effectiveness of induced
mutexes by comparing SGP’s performance on the Movie domain to that of
IPP. The Movie domain as we designed it was the simplest possible example
of a domain in which the discovery of induced mutexes was necessary. In
our experiments, we compared SGP to IPP 3.2 (the then-current version).
We found that SGP correctly identified the induced mutexes and thus elim-
inated a great deal of search. IPP, on the other hand, failed to find these
mutexes, and performed poorly, requiring much fruitless search. The results
from the competition present a different view. In the competition, IPP 3.3
was used, and was able to simplify the Movie domain by removing inertia
(this optimization was not available in IPP 3.2). Inertia (also called static
propositions) are propositions whose truth values never change as a result of
any actions in the domain; thus, these propositions can be “constant-folded”
out of the problem. Close examination shows that removing inertia from the
Movie domain completely eliminates the conditional effects of the actions,
and hence IPP 3.3 had no trouble identifying all the mutex conditions!

Although IPP 3.3 performs well on the original Movie domain, we believe
the need for induced mutexes is not obviated. Following the competition,
we constructed a slightly more complex domain, Movie-2, which cannot be
simplified by removing inertia. In our tests, we found that SGP still per-
formed well in Movie-2, but that IPP 3.3’s performance deteriorated quickly.
See table 4 for the results of this test.

We observe, however, that IPP has other optimizations that allow it to
perform better than SGP. In particular, the RIFO [24] method of removing
irrelevant objects effectively reduces the planning graph size. Thus, even
though IPP has to perform an exhaustive but futile search, it can do so
quickly. Additionally, IPP is implemented in C, with much care given to
code speed. Thus, even without the advantage of identifying the induced
mutexes, IPP can perform quite well.

The planning competition highlighted a number of places where SGP
could be improved. One recurring problem we faced was planning graphs
that were too large. A few possible solutions have been discussed before:

e In-place graph expansion. Nodes in the planning graph are not
replicated at each level, but rather annotated with the level where

18

SGP 1.0d | IPP 3.2 | IPP 3.3 | IPP 3.3+RIFO
movie-watching
5| 0.01 0.06 0.01 0.01
8 | 0.01 0.53 0.01 0.01
11 | 0.03 2.53 0.01 0.02
14 | 0.03 11.79 0.01 0.03
movie-watching-2
5 | 0.02 0.12 0.10 0.02
81 0.03 0.73 0.65 0.03
11 | 0.05 2.97 2.68 0.03
14 | 0.07 8.94 7.99 0.03

Figure 4: Comparison of SGP and IPP on Movie domains. All times are
seconds of wall-clock time on a 300MHz Pentium II with 256 MB of memory.

they appear. This idea was discussed in [30] and implemented in [21]
and as part of [31].

¢ Removing irrelevant objects. RIFO [24] is a method of removing
objects in the domain from consideration when expanding the planning
graph. Backward focusing [14] is a way of analyzing the problem so
as to limit the graph expansion to exclude any objects or actions that
cannot possibly contribute to achieving the goals.

2.5 STAN

STAN (STate ANalysing planner) is based on GRAPHPLAN, but extends this
planning technology in several ways:

1. A more sophisticated data structure is used to store the graph and to
aid in its construction than was utilized in earlier versions of GRAPH-
PLAN.

2. More analysis is carried out on the graph and the problem it encodes
to reduce search branches, including goal ordering analysis, symmetry
analysis and resource analysis.

3. A wavefront is exploited at the fix-point of the plan graph to avoid
unnecessary additional work.

19

4. State-analysis techniques, implemented as a module of STAN which
can be exploited as a planner-independent system, T1M, are used to
acquire information about a domain and problem encoding which is
exploited in instantiation and filtering of the the plan graph.

The implementation of the plan graph in STAN is based on a careful reuse
of much of the central graph structure, to avoid copying layer-independent
information repeatedly, together with bit-level operations to support graph
construction and careful filtering of the layer-dependent structures to reduce
the retesting carried out at subsequent layers. This implementation, the
most recent version of which is described in full in [21], is efficient and
relatively compact, although the competition version of STAN (STAN version
1.0) still allowed unnecessary wastage of space.

The plan graph is carefully analyzed during construction to produce
several auxiliary relationships between goals and between actions at each
layer. In particular, STAN identifies ordering relations between pairs of goals
reflecting the order in which they must be satisfied so that both are true
at a given level. This allows considerable reduction of the search space by
automatically selecting noops for goals which must be satisfied earlier than
the current layer during search. Furthermore, certain chains of ordered goals
can prevent an entire goal set from being achieved at a given layer without
any search at all. STAN also identifies other goal sets as unachievable when
they exceed resource limitations imposed by the domain. Resources include
numbers of objects in certain configurations, the rate at which certain objects
can be put into key configurations during the plan execution and other
factors as well as the physical resources available to the planning agent
(such as grippers, fuel, containers and so on). Limits on the availability
of abstract resources, such as the rate at which objects can be configured,
arise from the limits imposed by the physical resources of the agent and are
expressed, for example, in terms of constraints on the number of plan graph
levels that must have been built before a certain goal configuration can be
achieved. The resource analysis performed by STAN can dramatically reduce
search, by identifying the minimum number of graph layers that must be
built, in some domains including the TSP domain discussed below. Finally,
STAN exploits structural features of the problem domain, such as symmetry,
to reduce search. The competition version of STAN performed only a very
preliminary symmetry analysis, in which symmetric objects (those which
are indistinguishable and hence do not form interestingly different action
instantiations) were identified to reduce the number of action instantiations

20

produced. Although STAN was able to detect certain forms of symmetry,
the competition version was not able to exploit it fully. In STAN version
3 we are working on a much more advanced utilization of the symmetric
structure of domains.

One of the most important features of STAN that distinguishes it from
other GRAPHPLAN-based planners is its use of a highly efficient implicit rep-
resentation of the graph beyond the fix-point. STAN avoids both construc-
tion and search of the plan graph beyond the fix-point, where the graph is
static. Instead, search is built on a collection of candidate goal sets which
are generated as failure sets at the fix-point and which are pushed one layer
forward to be retried. This process in which failed goal sets are promoted
forward forms a kind of rolling collection of goal sets at the fix-point, which
we call a wave-front [21]. The efficiency gains this mechanism offers can be
dramatic in certain problems and can also significantly reduce the memory
demands during the process of constructing a solution.

The exploitation of the results of state analyses, of various kinds, is an
important feature of STAN. State analyses can be done in a pre-processing
stage, using techniques which are planner independent, and the results fed
into the planning process and used to reduce, and even eliminate, some of the
more resource intensive aspects of planning. Symmetry analysis, in which
symmetric objects and actions are identified in order to prune redundant
search, is one such form of state analysis. Another technique, currently being
integrated with STAN version 3, is the types and state invariant inference
analysis performed by the T1M module [6]. The competition version of STAN
was not fully integrated with TiM and therefore could not make use of the
inferred state invariants. It could exploit the type structure inferred by T1M,
but the competition domains had types supplied so this did not give STAN
as large an advantage over the other competitors as can be achieved with
some domain encodings.

During the development of the competition version of STAN a pattern was
established of exploring the behavior of the planner on a family of problems
in order to understand what made them hard, followed by the construction of
techniques to tackle the source of the difficulty in a domain-independent way.
An important lesson learned from this process, and from the competition
itself, is that problems are hard for a wide variety of reasons and that these
different sources of difficulty can lead to the development of techniques which
are powerful in certain contexts but are simply useless overhead in others.
Of particular interest to us were problems which appeared hard for STAN
and yet were easy for other planners, or are intuitively easy.

21

One of the reasons problems can be hard, affecting GRAPHPLAN-style
planners in particular, is that domains can contain huge collections of in-
stantiated actions which have no useful role in the plan. This leads to both
a large cost in the construction phase and also, often, a large cost in the
search phase when many branches must be explored. These branches of-
ten express the same fundamental planning decisions but, because of the
search in grounded actions, differ in details which are insignificant from the
planning point of view.

STAN attempts to deal with this problem in several ways: type-inference
leads to a potential reduction in the numbers of instantiated actions; the use
of static conditions in instantiation and some preliminary work on filtering
to remove some objects in some domains.

There remains much work to do in this area: RIFO offers IPP a huge
benefit in many problems, by filtering out many irrelevant objects, actions
and facts, but at the price of possible incompleteness. As can be seen in
Section 3, all of the planners were confounded when confronted with problem
instances containing large numbers of ground operator instances. The ability
to reduce these by intelligent filtering would appear to be a critical element
of successful planning.

In contrast, some problems are hard not because of the cost of construc-
tion of the graph, but because of the multiplicity of search paths in the
problem. This is particularly problematic in cases in which the problem
appears to be solvable long before it actually is (the graph contains the
non-mutex goals long before the solution layer). An example of a problem
like this is the Complete-Graph Traveling Salesman Problem in which the
graph is completely connected so that the traveler is unconstrained in the
order of visits he makes. In this case, the problem is that all of the desti-
nations could be visited within a single step and any pair could be visited
after two steps. Thus, the problem appears solvable after two steps, but is
not actually solvable until n steps have passed, where n is the number of
sites to be visited. However, as n grows the number of possible paths the
traveler might have taken explodes exponentially, so that the search problem
quickly becomes intractable. STAN uses resource analysis to determine that
only one destination can be visited per step, so does not search for a plan
until n layers are constructed and can also ensure that every layer is used
for a visit to a hitherto unvisited site.

Unfortunately, there are other problems with similar character which
are not yet adequately tackled by STAN. The Gripper problem used in the
competition is an example: STAN correctly determines that no more than

22

two balls can be deposited per time step. However, it does not allow for the
fact that the two balls must also be picked up and transported, requiring an
additional two steps (and a third to return to the source for another load),
so the the resource analysis does not help as much as one might hope.

GRAPHPLAN style planners also suffer during search from a problem
of premature commitment. This occurs because the use of ground action
instances forces selection of objects to play particular roles in a plan of-
ten before constraints which would govern their choice become apparent.
Constraint-solving planners can benefit in these problems by making choices
in the highly constrained parts of the plan and propagating them into the
less constrained parts of the plan. Forward- and backward-chaining plan-
ners do not direct their planning strategies by exploiting the most highly
constrained parts of a plan structure and this can lead to costly mistaken
choices which must be retracted.

Some problems are hard because they have an inherent combinatorial
cost, while others are, in principle, easy, yet prove hard to current planning
technology, or at least to some current planning strategies. The Gripper
domain is a good example of the latter — a domain in which problems are
trivial for human problem solvers and yet an optimal plan for this domain
eluded all of the planners in the competition for instances larger than a
dozen balls. More recent work on STAN has explored the exploitation of
symmetry in problems such as Gripper which can reduce the difficulty dra-
matically [7]. Nevertheless, there is clearly much work to be done on recog-
nizing and exploiting features of problems that humans appear to identify
with ease. Furthermore, the representation of solutions to problems such as
these remains an issue: no human would represent the solution to problems
in the Gripper domain as an explicit sequence of steps, but as a method for
generating those steps during execution (“Transport the first two balls from
room a to room b, then return and repeat until all balls are transported.” —
the fact that the ”first two balls” are not identified by name is an indication
of the role of symmetry for human problem solvers).

3 Review of Results

One of the tasks the Competition committee faced was to determine a strat-
egy for evaluating planner performance. Before the competition a formula
was proposed which combined weighted values for plan length and plan-
ning time, adjusted to reflect the relative performance of different planners

23

on the same problem (to give due credit to planners which quickly solved
problems that defeated many of the others). In the event, this formula was
judged to give counter-intuitive results and it was essentially abandoned.
This left a void in the final evaluation of performance and it remains, in
the STRIPS track, a difficult task to assess the relative performances of the
planners. A summary of the results was presented at the event but this is
crude, in that it fails to differentiate between good performance on simple
problems and good performance on very hard problems. This masking is
amplified by the fact that each of the planners faced minor problems due to
program bugs which made what would have otherwise been simple problems
appear hard for those planners. In addition, in the Mystery domain several
problems were unsolvable (and proven such by some of the planners) but
these problems were ignored in the results summary. Overall, the results of
the individual planners all showed strengths and weaknesses and it is not
surprising that a simple direct comparison proved unsatisfactory in the com-
petition. This remains an unsolved challenge for future competition events
and the community must be wary of setting up targets (in whatever form)
which over-simplify the objectives of planners. The problem that evaluation
represented suggests that these objectives remain a complex and clouded
issue.

It is worth emphasizing that three of the planners running in the STRIPS
track (blackbox, IPP and STAN) all produce parallel optimal plans (al-
though IPP does not guarantee to do so when using its RIFO machinery),
which, when linearized, will not always lead to optimal sequential plans.
This can explain the discrepancies in plan lengths discovered by these plan-
ners. In general, the length of the linearized plan is difficult to control when
using a mechanism which produces optimal parallel plans. HSP produces
linearized plans, but does not support claims for optimality. An interesting
example to consider is the seventh Logistics problem in the first round of
the competition, where HSP produced the only plan found by any of the
planners. This was 112 steps long. STAN has subsequently demonstrated
that there is a 37 step plan!

3.1 The First Round: STRIPS track

The competition involved the use of five domains in the first round and
three in the second. The first round used the Gripper domain, the Movie
domain, Logistics, the Mystery and Mystery-Prime domains. The last two
are variations on transportation domains, with limited fuel. In the last

24

domain the fuel can be piped between nodes in the transportation network,
while in the Mystery domain the fuel is held at its starting depots. In the
first round, 30 problems were presented of each type, except for Gripper, in
which just 20 problems were presented.

The characteristics of all of the last three domains are similar, in that
they are all transportation problems involving moving objects around a net-
work of locations as efficiently as possible. Interestingly, these all had a
similar performance limit for all of the planners: no planner could solve a
Logistics problem with more than 10000 ground action instances, and all
the problems with fewer than 10000 ground action instances were solved
by at least one of the planners.'® Mystery-Prime proved more tractable,
with problems including as many as 24290 ground action instances being
solved by some planners (although the problem instance with 24290 actions
involved producing a plan with only four steps). However, problems with
over 10000 ground action instances still proved hard in general, with several
planners failing on these large problems and inconsistent performance being
demonstrated between the threshold of 10000 ground action instances and
the largest solvable problems. More than half of the Mystery problems pre-
sented in the competition were under 10000 ground action instances in size.
Of the 13 problems that exceeded this size, five are unsolvable and three
were solved in the competition by at least one of the planners. The other
five problems are all solvable, at least with STAN, although buffer sizes were
set too small in the competition configuration for it to solve them. STAN
uses an object filtering mechanism which worked successfully in both the
Mystery and Mystery-Prime domains to cut the numbers of ground action
instances so that in the Mystery domain none of the problems presented
actually produced more than 8000 ground action instances.

Interestingly, of the 30 Mystery domain problems presented in the com-
petition, 11 were proved unsolvable by at least one planner, rather than
simply proposed unsolvable because of a lack of resources. This distinction
was not used in the competition (presumably because of the difficulty in dis-
tinguishing an accurate claim that a problem is unsolvable from a lucky guess
when resources run out), but the three GRAPHPLAN-based planners used in
the competition are capable of identifying problems of this kind (at least
in principle), while blackbox can identify some unsolvable problems (those

13The numbers of ground action instances have been computed using STAN, with all
filtering mechanisms turned off. STAN uses TIM to generate a type structure for each
domain and this can result in fewer ground action instances being generated than would
be the case with raw instantiation.

25

in which some of the goals are unreachable, or are pairwise unreachable).
STAN was fastest in demonstrating 10 of the 11 problems to be unsolvable
(on average it was 15 times faster than its nearest rival at showing these
problems unsolvable), and IPP was fastest on the remaining problem.

The Movie domain presented no difficulty to any of the planners and
performance times were so small that they cannot really be usefully com-
pared. This domain was included in order to consider its effect in the ADL
track, as was discussed in Section 2.4. The Gripper domain is peculiar in
that it is a domain which is intuitively easy to solve — the problems present
no difficulty for a human planner — and yet only HSP was able to solve in-
stances involving more than 12 balls. Performance of all the other planners
deteriorated exponentially with the increasing problem size. IPP used RIFO
in this problem and this allowed it to solve more problems than would oth-
erwise have been possible, by excluding one gripper from consideration. HSP
produced similarly sub-optimal solutions by carrying only one ball on each
trip. The reason this problem is so hard is that there are so many ways
in which the actions can almost solve the problem with a shorter sequence
than is actually required to completely solve it and these garden-path se-
quences increase exponentially with two grippers, despite the fact that even
the hardest problem instance presented in this domain contains only 340
ground action instances! One of the reasons this problem appears to be so
simple for a human planner is that a human can see the essential symmetry
to the problem and can exploit this to simplify the problem to the extent that
it becomes trivial. This problem is one which highlights a critical weakness
of the current fast planning technology.

In round 1, of the 140 problems presented, 98 problems were either
solved or proved unsolvable by at least one of the planners. At least 6 of
the remaining problems have been solved by one or more of the planners
since the competition. The problem domain which proved difficult for all
the planners was the Logistics domain, accounting for 25 of the unsolved
problems.

3.2 The Second Round: STRIPS track

In the second round a new domain was introduced: the Grid domain. IPP
managed to solve 3 of the 5 problems presented, using strong RIFO pruning
and producing sub-optimal plans. The other planners managed only one
problem in this domain. The problem sizes ranged from 2609 ground action
instances for the simplest through to 16239 (unsolved by any planner). IPP

26

problem original | RIFO strong | RIFO weak
logl 571/25 (13) i -
log2 502/21 (20) ; ;
log3 958/26 (27) - -
logd 3561/42 (-) | 189/30 (-) ;
log5 4985/53 (-) | 119/26 (31)]
mprimel | 7809/36 (5) 7/9 (1) 11/9 (L)
mprime2 | 3281/32 (8) - -
mprime3 | 97259/68 (-) - -
mprimed | 8485/42 (5) 7/10 (4) -
mprimeb | 6773/22 (6) - -
gridl | 2610/38 (14) _ | 80/11 (20)
grid2 4501/50 (-) | 69/19 (L) | 260/19 (31)
grid3 7256/64 (-) | 315/21 (L) | 557/21 ()
gridd 11151/80 (-) | 135/24 (47) -
grid5 16240/98 (-) | 1481/49(-)

Figure 5: The effects of exploiting RIFO with IPP.

solved an instance with 11150 ground action instances.

The other domains used were Logistics and Mystery-Prime. All but
one of the problems presented in these domains were solved by at least
one planner. All of the Logistics problems were under 5000 ground action
instances (although the two hardest of these involved few planes and, in one,
many trucks, making for a big search space). All but one of the Mystery-
Prime problems were under 6000 ground action instances, and the exception
contained 19730 ground action instances. This instance defeated all of the
planners in the competition, although at least one of the planners has since
generated a 33 step plan which solves it. With the exception of a single
instance (traced to a trivial program bug) all of the other problems were
solved by all of the planners.

In the light of the observations already made about the sizes of the
problems measured in terms of numbers of ground action instances, it is
interesting to consider the behavior of IPP using the RIFO sub-system which
filters some objects and action instances from domains prior to planning.
RIFO was not used by IPP in the first round of the competition, except
in the Gripper domain in which it was turned on by hand. In this domain,

27

RIFO identifies one gripper hand as irrelevant, so that only one ball is carried
at a time and plans become much longer.

In the second round, IPP was run using the RIFO meta-strategy, which
significantly reduced the search space for the planner. Table 5 lists the
number of ground actions and objects in the original problem descriptions
and, in brackets, the length of the plan if IPP could find one given a 10 minute
CPU time limit and a 120 Mb memory limit, as in the competition, but on
a SPARC 1/170 (which is approximately twice as slow). The table shows
the number of selected ground actions and objects after the stronger and
weaker RIFO selection processes. 1 means the planning problem became
unsolvable, — means RIFO was inactive, (—) means no plan was found
because the planner either exceeded the CPU time or memory limit.™

As the analysis shows, only 8 problems can be solved without RIFO, but
in using the meta-strategy 3 more solutions are found. The meta-strategy
combines only 2 out of the 12 selection heuristics. Which combinations work
for which examples has to be found out by experimentation. In the compe-
tition, no such experimentation was possible and therefore the selection of
the heuristics was done long before the competition, following the intuition
that one should try the strongest possible heuristic first because it leads to
the smallest search space, but then relax it by allowing more actions when
incompleteness occurs. The threshold parameters that decide whether RIFO
is activated at all were set, to 3500 actions and 35 objects, after a few trials
on some of the competition problems.

3.3 The ADL track

In the ADL track the same collection of domains and problems was used as in
the first round of the STRIPS track. Of course, the domain encodings were
reconstructed to exploit the ADL features. Only SGP and IPP competed in
this track.

IPP solved all problems from the Movie domain, the first 5 problems
from the Gripper domain containing 20 test problems, 13 out of 30 problems
in the Mystery and Mystery-Prime domains, and 3 out of 30 problems in
the Logistics domain. In total, it solved 69 problems in approximately 20
minutes, including all the 38 problems SGP solved. RIFO would not have

“The weaker RIFO heuristic is activated when either the stronger heuristic makes a
planning problem unsolvable as, for example, in the case of the third Grid problem or
when the number of ground actions remains below the threshold parameter of 3500 and
only the number of objects exceeds 35 as in the first Grid problem.

28

improved the performance of IPP in this round because on most examples it
makes the planner incomplete, so that the planner would have had to find
the solution in the original search space after all reduction attempts had
failed. In the Movie domain, however, the meta-strategy using the weaker
heuristic succeeds in determining that only a handful (between 5 and 9) of
the initial facts in each problem are relevant.

3.4 Commentary

Throughout the competition, no planner successfully solved any problem in-
stance which involved more than 60000 ground actions. In fact, without fil-
tering techniques to reduce the number of ground actions, no planner solved
problems with more than 25000 ground actions and reliable performance
was restricted to problems with fewer than 10000 ground action instances
or so. In domains with harder search space growth problems, even fewer
action instances could be handled. Although the number of ground action
instances is not an infallible guide to the difficulty of problems, it is clearly
an important indicator and strongly suggests that, at least for planners
which work with ground actions during plan construction, there is much
work to be done on the filtering process which could remove unnecessary
actions from the problem space. It is interesting to observe that problem
15 of the first round Logistics domain lies beyond the scope of the competi-
tion planners even with a manual filtering of the domain objects, removing
irrelevant packages and trucks, leaving as few as 3006 ground actions. The
difficulty of this problem is not easy to understand, since there appears to
be no pressure on the aircraft resources (with 6 aircraft available in just 3
cities), although the fact that the cities each have 6 locations could well be
significant.

Although number of ground actions represents an important element
in determining planner performance, the number of domain states is also
a factor. Indeed, for planning systems which do not instantiate operators
before planning, number of states might be a more important feature of the
problems. It is not easy to compute the numbers of states for some problems
(particularly Mystery and Mystery-Prime domains) since reachable states
are non-trivial to determine. However, for Logistics and Gripper it is very
straightforward. In the Logistics problems that were solved in round 1, the
state spaces contained between 10! states (problem 5) through to 8 x 102
states (problem 11). These are clearly very large state spaces. By contrast,
Gripper problems define state spaces containing a mere 256 states (problem

29

1) through to 68608 states (problem 4) and up to more than 4 x 10'® states
in the largest (problem 20), solved only by HsP. The 376832-state problem
5 was beyond all the planners but HSP, and none solved it optimally. This
analysis gives an indication of the dramatic contrast between the problems
in which the planning technology is performing well and the problems where
it demonstrates fundamental weaknesses.

3.5 Other Challenges

Although the size of domains, particularly measured by numbers of instan-
tiated ground actions, represents a critical challenge to planning technology,
the domains in the competition and others explored independently by the
competitors have revealed other important problems which must be ad-
dressed.

For example, the Gripper domain highlights the combinatorial costs of
exploring a large (and largely redundant) search space. The search must
be reduced when this is possible and in the Gripper domain in particular
there is huge potential for reduction in search costs. HSP demonstrated
that heuristic search in this space can offer dramatic benefits. HSP solved
all of the Gripper problems, where other planners managed at most 4 or
5. This domain alone accounts for three-quarters of HSP’s significant lead
over the other competitors in number of problems solved. HSP’s heuristic
effectively ignored the possibility of transporting the balls in pairs and solved
the problems by transporting one ball at a time between the rooms. IPP,
which succeeded in solving 5 of these problems, used its RIFO machinery
which caused it to ignore one of the grippers, also leading to solutions in
which only one ball was transported at a time. None of the planners could
exploit the incredible degree of symmetry in the problem to cut the search
space from its exponential size to reflect the trivial underlying problem.

The Logistics domain has the interesting property that the hardest part
of the problem instances usually lies in the middle of the plan. The problems
of transporting packages to and from airports, which sandwich the problem
of flying packages between cities, are relatively easy but often generate large
collections of redundant search paths. A planner which can tackle the core
problem, the flying of packages between cities, and propagate necessary
constraints outwards to the simpler ends of the plan, will have the advantage.
This represents a single instance of a more general issue: many planning
problems are not uniformly hard. A planner which can identify the hardest
parts of a planning problem and concentrate on solving those parts first,

30

propagating constraints towards the easier, initially less constrained, parts
of the problem will perform far better than a planner which always tackles
the problems from the same place.

The Mystery domain is a fascinating variation on the transportation
theme, introducing resource limits on carrier capacity and fuel, as well as
an underlying route planning problem. This domain (and the Mystery-
Prime variation) has the potential to produce problems which are hard for a
wide variety of reasons. The lack of resources can make the route planning
problem dramatically more complex as it interacts with the transportation
of multiple packages. Similarly, the capacity limits can interact with fuel
shortages to make it necessary to carefully coordinate the actions of carriers
to cooperate in the transportation of objects. By varying the size of fuel
dumps the problems can range from simple route planning (with abundant
fuel) to complex scheduling of interacting carrier actions (with limited fuel).

The Grid domain, used in the second round of the competition, repre-
sents a further transportation domain on a grid-shaped network, but with
constraints on the access to certain locations based on keys of appropriate
shapes for the corresponding locks. This domain represents a difficult search
domain, primarily because the domain forces the planner to use only one
useful action at each layer. Tackling this problem requires an effective filter
to remove ground actions, partly to reduce the cost of manipulating the
domain itself, but mainly to reduce the number of redundant search paths,
corresponding to multiple actual paths through the grid itself.

4 The Future

The first planning competition proved an extremely stimulating event for
the planning community. It has brought into sharp focus the state-of-the-art
in domain-independent planning and has offered the opportunity to identify
several essential issues for the planning community to address. First of these
is the development of a common planning domain description language, cur-
rently taking the form of PDDL. Although PDDL must be seen as still under
development, the effort already invested in its development is an important
step towards allowing planners to be usefully compared and in the construc-
tion of a generally useful repository of planning domain problems. Perhaps
the closest the community has come to this in the past is the collections
of problems included with particular planner releases, where those planners
were widely used (UCPOP being an obvious example [28]).

31

PDDL has not yet been put to the test in its provision of HTN ex-
pressiveness, and there remain questions over the ADL components of the
language. In particular, it has been proposed that nested conditional effects
are an unnecessary element of the language. Provision for the expression of
resource constrained planning problems also remains untested.

These observations highlight a second issue for the community to con-
front: it remains difficult to compare planners on equal footing. Planners
can differ widely in terms of the expressiveness of the domain description
language they handle, the expressiveness of the plans they produce, the
speed of planning and range of domains they can successfully tackle. In
order to make coherent progress in the field it is necessary to be able to
compare potential advances, to attempt to coalesce different but compatible
approaches and to avoid repeated redevelopment of the same basic planning
software tools at dozens of different sites. A common domain description
language is only one step in addressing this issue. It also requires compo-
nents of planning systems be made available to the community, particularly
in stable and adaptable forms. PDDL parsers are already being made avail-
able, and some of the code used in the competition is available as source to
be modified, extended or adapted. These are essential steps in supporting
the efforts of the community to advance beyond the current state-of-the-art.

A third issue arises from the hope to push the boundaries of the cur-
rent state-of-the-art in planning: the benchmark domains which are used to
establish the current levels of performance and to set targets for the next
generation of planners must be chosen with care. Many of the standard
benchmark domains were designed with specific agendas. Often they were
designed to showcase specific expressive features of particular languages and
are uninteresting when expressed in STRIPS (the Movie domain is one ex-
ample and Pednault’s Briefcase World [27] another). Others are designed to
showcase particular planning strategies (the Rocket Domain used for GRAPH-
PLAN, for example [2]), or to demonstrate flaws in certain planning strategies
(for example, the Gripper Domain). Although these domains retain some
interest for these very reasons, it is important for the planning community
to look beyond these “simple” problems and identify more significant bench-
marks which represent tasks that demonstrate planning’s coming-of-age to
the wider research and applications community. The greatest challenge for
the community, then, is to take the lessons learned from the competition
and from the research that is current and to show how planning can move
on from these problem domains.

32

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

C. Anderson and D. Weld. Conditional effects in Graphplan. In AIPS-
98, pages 44-53, 1998.

A. Blum and M. Furst. Fast planning through planning graph analysis.
AlJ, 90(1-2):279-298, 1997.

B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selec-
tion mechanism for planning. In Proceedings of AAAI-97, 1997.

M.D. Ernst, T.D. Millstein, and D.S. Weld. Automatic sat-compilation
of planning problems. In Proceedings of IJCAI-97, Nagoya, Japan,
1997.

E. Fink and M. Veloso. Formalizing the PRODIGY planning algorithm.
In M. Ghallab and A. Milani, editors, New Directions in AI Planning,
pages 261-272. IOS Press (Amsterdam), 1996.

M. Fox and D. Long. The automatic inference of state invariants in
TIM. JAIR, 9, 1998.

M. Fox and D. Long. Exploiting symmetry in STAN. In Proceedings of
IJCAI, 1999.

B. Gazen and C. Knoblock. Combining the expressivity of UCPOP
with the efficiency of Graphplan. In ECP-97, pages 221-233, 1997.

H. Geffner and B. Bonet. High-level plannnig and control with incom-
plete information using POMDPs. In Proceedings AIPS-98 Workshop
on Integrating Planning, Scheduling and Ezecution in Dynamic and
Uncertain Environments, 1998.

C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search
through randomization. In Proceedings of AAAI-98, Madison, WI,
1998.

W. Harvey and M. Ginsberg. Limited discrepancy search. In Proceed-
ings IJCAI-95, 1995.

Joerg Hoffmann and Jana Koehler. A new method to index and query
sets. In IJCAI-99, 1999.

33

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques
to solve real world SAT instances. In Proceedings of AAAI-97, 1997.

R. Kambhampati, E. Lambrecht, and E. Parker. Understanding and
extending Graphplan. In Proceedings of the 4th FEuropean Conference on
Planning (ECP-97), pages 260-272. Berlin, Germany: Springer-Verlag,
1997.

H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of
ECAI-92, Vienna, Austria, 1992.

H. Kautz and B. Selman. Pushing the envelope: planning, propositional
logic, and stochastic search. In Proceedings of AAAI-96, Portland, OR,
1996.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending
planning graphs to an ADL subset. In ECP-97, pages 273-285, 1997.

R. Korf. Real-time heuristic search. Artificial Intelligence, 42, 1990.
R. Korf. Linear-space best-first search. Artificial Intelligence, 62, 1993.

C.M. Li and Anbulagan. Heuristics based on unit propagation for sat-
isfiability problems. In Proceedings of IJCAI-97, Nagoya, Japan, 1997.

D. Long and M. Fox. The efficient implementation of the plan-graph
in STAN. JAIR, 1999.

D. McDermott. A heuristic estimator for means-ends analysis in plan-
ning. In Proceedings of Third Int. Conf. on AI Planning Systems (AIPS-
96), 1996.

D. McDermott and the AIPS Planning Competition Committee. PDDL
— The Planning Domain Definition Language. Draft, 1998.

B. Nebel, Y. Dimopoulos, and J. Koehler. Ignoring irrelevant facts and
operators in plan generation. In ECP-97, pages 338-350, 1997.

N. Nilsson. Principles of Artificial Intelligence. Tioga, 1980.

J. Pearl. Heuristics. Morgan Kaufmann, 1983.

34

[27]

[28]

[29]

[30]

[31]

[32]

[33]

E. Pednault. ADL: Exploring the middle ground between STRIPS
and the situation calculus. In Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning,
pages 324-332. San Francisco, Calif: Morgan Kaufman, 1989.

J. Penberthy and D.S. Weld. UCPOP: A sound and complete par-
tial order planner for ADL. In Proceedings of the third International
COnference on Principle of Knowledge Representation and Reasoning

(KR-92), 1992.

B. Selman, H. Kautz, and B. Cohen. Noise strategies for local search.
In Proceedings of AAAI-9), Seattle, WA,, pages 337-343, 1994.

D. Smith and D. Weld. Incremental Graphplan. Technical Report TR
98-09-06, University of Washington, 1998.

D. Smith and D. Weld. Temporal Graphplan with mutual exclusion rea-
soning. Technical Report To appear in IJCAI-99, University of Wash-
ington, 1998.

D.E. Smith and D.S. Weld. Conformant Graphplan. In Proceedings
of 15th National Conference on Artificial Intelligence, pages 889-896.
Menlo Park, Calif: AAAT Press, 1998.

D.S. Weld, C.R. Anderson, and D.E. Smith. Extending Graphplan to
handle uncertainty and sensing actions. In Proceedings of 15th National
Conference on Artificial Intelligence, pages 897-904. Menlo Park, Calif:
AAATI Press, 1998.

35

