274,091 research outputs found
Heart-rate pulse-shift detector
Detector circuit accurately separates and counts phase-shift pulses over wide range of basic pulse-rate frequency, and also provides reasonable representation of full repetitive EKG waveform. Single telemeter implanted in small animal monitors not only body temperature but also animal movement and heart rate
Solar energy converter using surface plasma waves
Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons
Buckling and vibration of periodic lattice structures
Lattice booms and platforms composed of flexible members or large diameter rings which may be stiffened by cables in order to support membrane-like antennas or reflector surfaces are the main components of some large space structures. The nature of these structures, repetitive geometry with few different members, makes possible relatively simple solutions for buckling and vibration of a certain class of these structures. Each member is represented by a stiffness matrix derived from the exact solution of the beam column equation. This transcendental matrix gives the current member stiffness at any end load or frequency. Using conventional finite element techniques, equilibrium equations can be written involving displacements and rotations of a typical node and its neighbors. The assumptions of a simple trigonometric mode shape is found to satisfy these equations exactly; thus the entire problem is governed by just one 6 x 6 matrix equation involving the amplitude of the displacement and rotation mode shapes. The boundary conditions implied by this solution are simple supported ends for the column type configurations
The ground state and the long-time evolution in the CMC Einstein flow
Let (g,K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold M
with non-positive Yamabe invariant (Y(M)). As noted by Fischer and Moncrief,
the reduced volume V(k)=(-k/3)^{3}Vol_{g(k)}(M) is monotonically decreasing in
the expanding direction and bounded below by V_{\inf}=(-1/6)Y(M))^{3/2}.
Inspired by this fact we define the ground state of the manifold M as "the
limit" of any sequence of CMC states {(g_{i},K_{i})} satisfying: i. k_{i}=-3,
ii. V_{i} --> V_{inf}, iii. Q_{0}((g_{i},K_{i}))< L where Q_{0} is the
Bel-Robinson energy and L is any arbitrary positive constant. We prove that (as
a geometric state) the ground state is equivalent to the Thurston
geometrization of M. Ground states classify naturally into three types. We
provide examples for each class, including a new ground state (the Double Cusp)
that we analyze in detail. Finally consider a long time and cosmologically
normalized flow (\g,\K)(s)=((-k/3)^{2}g,(-k/3))K) where s=-ln(-k) is in
[a,\infty). We prove that if E_{1}=E_{1}((\g,\K))< L (where E_{1}=Q_{0}+Q_{1},
is the sum of the zero and first order Bel-Robinson energies) the flow
(\g,\K)(s) persistently geometrizes the three-manifold M and the geometrization
is the ground state if V --> V_{inf}.Comment: 40 pages. This article is an improved version of the second part of
the First Version of arXiv:0705.307
New Symbolic Tools for Differential Geometry, Gravitation, and Field Theory
DifferentialGeometry is a Maple software package which symbolically performs
fundamental operations of calculus on manifolds, differential geometry, tensor
calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the
variational calculus. These capabilities, combined with dramatic recent
improvements in symbolic approaches to solving algebraic and differential
equations, have allowed for development of powerful new tools for solving
research problems in gravitation and field theory. The purpose of this paper is
to describe some of these new tools and present some advanced applications
involving: Killing vector fields and isometry groups, Killing tensors and other
tensorial invariants, algebraic classification of curvature, and symmetry
reduction of field equations.Comment: 42 page
Sun-synchronous highly elliptical orbits using low-thrust propulsion
Due to restrictions within the current architecture of the global observing system (GOS), space-based remote sensing of Earth suffers from an acute data-deficit over the critical polar-regions. Currently, observation of high-latitude regions is conducted using composite images from spacecraft in geostationary (GEO) and low-Earth orbits (LEOs) [1]. However, the oblique viewing geometry from GEO-based systems to latitudes above around 55 deg [2] and the insufficient temporal resolution of spacecraft in LEO means there is currently no source of continuous imagery for polar-regions obtained with a data refresh rate of less than 15 minutes, as is typically available elsewhere for meteorological observations
Solar energy conversion using surface plasmons for broadband energy transport
A new strategy for efficient solar energy conversion based on parallel processing with surface plasmons is introduced. The approach is unique in identifying: (1) a broadband carrier with suitable range for energy transport, and (2) a technique to extract more energy from the more energetic photons, without sequential losses or unique materials for each frequency band. The aim is to overcome the fundamental losses associated with the broad solar spectrum and to achieve a higher level of spectrum splitting than has been possible in semiconductor systems
Physics of the Pseudogap State: Spin-Charge Locking
The properties of the pseudogap phase above Tc of the high-Tc cuprate
superconductors are described by showing that the Anderson-Nambu SU(2) spinors
of an RVB spin gap 'lock' to those of the electron charge system because of the
resulting improvement of kinetic energy. This enormously extends the range of
the vortex liquid state in these materials. As a result it is not clear that
the spinons are ever truly deconfined. A heuristic description of the
electrodynamics of this pseudogap-vortex liquid state is proposed.Comment: Submitted to Phys Rev Letter
- …
