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DifferentialGeometry is a Maple software package which symbolically performs fun-
damental operations of calculus on manifolds, differential geometry, tensor calculus,
spinor calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the
variational calculus. These capabilities, combined with dramatic recent improve-
ments in symbolic approaches to solving algebraic and differential equations, have
allowed for development of powerful new tools for solving research problems in
gravitation and field theory. The purpose of this paper is to describe some of these
new tools and present some advanced applications involving: Killing vector fields and
isometry groups, Killing tensors, algebraic classification of solutions of the Einstein
equations, and symmetry reduction of field equations. C© 2012 American Institute of
Physics. [doi:10.1063/1.3676296]

I. INTRODUCTION

DifferentialGeometry is a Maple software package which symbolically performs fundamental
operations of calculus on manifolds, differential geometry, tensor calculus, spinor calculus, Lie
algebras, Lie groups, transformation groups, jet spaces, and the variational calculus. These capa-
bilities, combined with dramatic recent improvements in symbolic approaches to solving algebraic
and differential equations, have allowed for development of powerful new tools for solving research
problems in gravitation and field theory. The purpose of this paper is to briefly describe some of
these new tools and present some advanced applications.

In Sec. II, we consider the problem of finding Killing vector fields and determining the structure
of the associated isometry group. As an example, we show that the Gödel spacetime is a reductive
homogeneous space. Also demonstrated in Sec. II is how to use DifferentialGeometry to perform
case-splitting analysis, which isolates exceptional values of functions and parameters. This latter
point is illustrated with a family of explicit vacuum metrics in the Kundt class which generically
admit no isometries.

In Sec. III, we focus on Killing tensors as examples of local invariants of (pseudo-)Riemannian
manifolds which can be computed with DifferentialGeometry. We show that all rank 2 and rank 3
Killing tensors of the Gödel spacetime are reducible, i.e., they are built from symmetric products of
rank-1 Killing tensors.

In Sec. IV, we consider the algebraic classification of curvature tensors. We focus on the ability
to perform case splitting when solving equations symbolically to analyze a family of hypersurface
homogeneous Einstein spacetimes found in Ref. 11. With one minor correction, we confirm the
results there and we show that the family of metrics includes some additional Einstein metrics and
Petrov types at exceptional values of parameters appearing in the metric.

Finally, in Sec. V, we consider the problem of reducing field equations by a prescribed group
of symmetries. We do this in the context of the Einstein equations for fully nonlinear gravitational
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plane waves, which are defined by a 5 parameter isometry group. In particular, we show how
DifferentialGeometry can be used to find the most general group-invariant metric and to find
the residual symmetry group admitted by the reduced field equations. To our knowledge, these
symbolic tools, which implement the theory of Ref. 2, are completely new and unique to
DifferentialGeometry.

The applications we present illustrate a number of important features of DifferentialGeome-
try. First and foremost, it is integrated across mathematical sub-disciplines. The same command is
used to create manifolds, manifolds with anholonomic frames, vector bundles, jet spaces, homo-
geneous spaces, Lie algebras, and Lie algebras with coefficients. All these different computational
environments can coexist within the same worksheet. Command syntax is integrated across these
environments. We note that many commands support tracking of intermediate computations, and
there is an extensive set of utilities to support the rapid development of custom programs. Differ-
entialGeometry also includes an array of Libraries containing tables of abstract Lie algebras, Lie
algebras of vector fields, differential equations, and solutions of the Einstein equations (including
matter couplings). We also note that the underlying code for all DifferentialGeometry commands
can be explicitly displayed so that, if desired, one can have complete control over the details of
all computations. As part of the Maple distributed library, the DifferentialGeometry software is
constantly tested and maintained.

In DifferentialGeometry, all tensor fields, spinor fields, connections, and so forth are built and
displayed using index-free notation as is standard in the mathematical literature. Since Differential-
Geometry runs as a package in Maple (see, e.g., Ref. 7), the syntax of all commands and output
which we describe reflects this.14 We have taken a few liberties with the output of some of the
commands to make it more readable in this venue. Much of the capabilities described here appear
in Maple14 and Maple15. Full documentation and tutorials can also be found in these releases. An
expanded version of the present paper is available.4

II. ISOMETRIES AND KILLING VECTOR FIELDS

Let g be a metric on a manifold M and G a Lie group. A group action is a smooth mapping μ:
G × M → M. The isometry group of the metric g is a group action which preserves the metric, i.e.,
for each h ∈ G, μ∗

h g = g. The infinitesimal generators of the isometry group are the Killing vector
fields V, which satisfy an over-determined system of linear partial differential equations (PDEs), the
Killing equations:

LV gab = ∇a Vb + ∇bVa = 0. (2.1)

Using the vector field commutator as the Lie bracket, the vector space of Killing vector fields forms
a Lie algebra g isomorphic to the Lie algebra of G. In this section, we show how to symbolically
determine Killing vector fields and analyze the corresponding isometry group.

A. Computation of Killing vector fields

We consider the Gödel metric, which is a homogeneous perfect fluid solution of the Einstein
equations. Expressed in coordinates (t, x, y, z), it takes the form

g = −(dt + ex dz) ⊗ (dt + ex dz) + dx ⊗ dx + dy ⊗ dy + 1

2
e2x dz ⊗ dz. (2.2)

The metric can be defined within DifferentialGeometry via

> DGsetup([t, x, y, z], M):
> omega := evalDG(dt + exp(x)*dz):
> g := evalDG(- omega &t omega + dx &t dx + dy &t dy + (1/2)

*exp(2*x)*dz &t dz):
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The first command defines a chart M. The second command defines a convenient differential
1-form. The third command defines the metric. The asterisk denotes scalar multiplication and the
symbol &t denotes tensor multiplication.

The command KillingVectors(g) computes the Killing Eqs. (2.1) of the metric g and
passes the resulting partial differential equations to the Maple differential equation solver routines.
Applied to the Gödel metric, the output is a list of 5 Killing vector fields which form a basis for the
vector space of solutions to Eqs. (2.1):

> KV := KillingVectors(g);

K V := [Dz, Dt , Dx − zDz,−4e−x Dt + 2zDx + (−z2 + 2e−2x )Dz, Dy].

Here, Dz ≡ ∂
∂z and so forth. One can verify that these vector fields are indeed Killing vector fields

by taking the Lie derivative of the metric with the LieDerivative command.

> LieDerivative(KV, g);

[0 dt dt, 0 dt dt, 0 dt dt, 0 dt dt, 0 dt dt],

where this list of five vanishing tensors corresponds to the Lie derivative of the metric with respect
to each of the vector fields in the list KV.

B. Properties of isometry algebras: Gödel is a reductive homogeneous space

Given the Killing vector fields admitted by a metric, the isometry group they generate can be
characterized using a number of techniques available in the DifferentialGeometry package. Such
a characterization is useful, of course, for better understanding the properties of the geometry
defined by the metric. But characterization of the isometry group is also important for analyzing
the equivalence problem for metrics, since the isometry group is a diffeomorphism invariant of the
metric. Characterization of the isometry group naturally splits into two parts: characterization of
the abstract group G and characterization of the group action μ. We illustrate this with the Gödel
spacetime whose Killing vector fields we have just determined.

We can characterize the abstract group G by determining its Lie algebra and then computing its
Levi decomposition. Recall that every Lie algebra g can be decomposed into a semi-direct sum of
a unique solvable ideal and a semi-simple Lie algebra, respectively. Given the Killing vectors KV
of the Gödel metric, we define the Lie algebra as a data structure LD, which stores the vector space
and brackets which define the Lie algebra g.

> LD := LieAlgebraData(KV, A);
> DGsetup(LD):

L D := [[e1, e3] = −e1, [e1, e4] = 2 e3, [e3, e4] = −e4].

The Lie algebra is now defined internally with a basis (e1, e2, . . . , e5) corresponding to the 5 vector
fields in KV. We next compute the Levi decomposition of g

> LeviDecomposition(A);

[[e2, e5], [e1, e3, e4]].

The output displays a basis for the solvable ideal, [e2, e5], and a basis for a complementary semi-
simple sub-algebra, [e1, e3, e4], in terms of the original basis [e1, . . . , e5] of g. It is easy to see
by inspection of the Lie brackets in g that the Levi decomposition is in this case actually a direct
sum decomposition of the solvable algebra and sl(2, R). Alternatively, the DifferentialGeometry
command Decompose could have been used to find this direct sum decomposition.

Let us now examine some features of the group action μ. Two salient properties of any group
action are the dimension of the orbits and the isotropy subgroups. The dimension of the orbits are
easily seen by inspection to be four in the Gödel example—the Killing vectors span the tangent
space at each point, so the spacetime is a homogeneous space. In more complicated examples the
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dimension and signature of the orbits can be computed using the DifferentialGeometry command
SubspaceType. Let us focus on the isotropy subgroups.

Recall that the isotropy group of a point p ∈ M is the subgroup Gp ⊂ G such that μh(p) = p, ∀h
∈ Gp. The isotropy subalgebra gp ⊂ g of a point p ∈ M is the subalgebra of Killing vector fields
which vanish at p. This subalgebra can be determined from a given algebra of vector fields with the
IsotropySubalgebra command. Here we compute the isotropy subalgebra of the origin for
the Killing vector fields KV of the Gödel metric and express it in terms of the algebra A defined
above:
> Iso := IsotropySubalgebra(KV, [t=0, x=0, y=0, z=0],

output=[’’Vector’’, A]);

I so := [(2e−x − 2)Dt − zDx + ((1/2)z2 − e−2x + 1)Dz], [e1 − 2 e2 − 1

2
e4].

Thus there is a one dimensional isotropy subgroup of the origin whose infinitesimal generator is the
Killing vector field,

V = 2(e−x − 1)∂t − z∂x + (
1

2
z2 − e−2x + 1)∂z = e1 − 2 e2 − 1

2
e4. (2.3)

Since G acts by isometry, the isotropy subgroup of a point p ∈ M preserves the inner product
defined at TpM by the Lorentz-signature metric, and hence can be identified with a subgroup of
the Lorentz group. Infinitesimally, the isotropy subalgebra is a subalgebra of the Lorentz algebra
consisting of combinations of boosts, spatial rotations, and null rotations. All such subalgebras have
been classified up to conjugation10 (for four dimensional spacetimes). Given a set of Killing vector
fields and a point p ∈ M the IsotropyType command computes this classification of the isotropy
subalgebra of p. For the Killing vector fields KV of the Gödel metric the isotropy subalgebra of the
origin is one dimensional and classified by

> IsotropyType(KV, [t=0, x=0, y=0, z=0]);
F12 (2.4)

Since the Gödel spacetime is homogeneous, this is in fact the isotropy type of any point. In the
classification scheme of Ref. 10, the subalgebra F12 corresponds to the generator of a spatial
rotation. Thus the Gödel spacetime is a locally rotationally symmetric homogeneous space.

Another important property of the group action, which characterizes how the isotropy group
sits as a subgroup of G, is whether its Lie algebra h ≡ gp admits a complement m in g such that
[h,m] ⊂ m. If so, the vector space decomposition g = h + m is called a reductive decomposition
of g and the group orbit is a reductive homogeneous space.8 We now use DifferentialGeometry to
show that the isometry algebra of the Gödel spacetime does admit a reductive decomposition. We
have already symbolically defined the isometry algebra A and its isotropy subalgebra Iso; we now
compute the general form of its complement:

> H := Iso[2];

H := e1 − 4e2 + e4

> M := ComplementaryBasis(H, [e1, e2, e3, e4, e5], t);

M :=[(t1 + 1)e1 − 2t1e2 − 1

2
t1e4, t2e1 + (−2t2 + 1)e2 − 1

2
t2e4,

t3e1 − 2t3e2 + e3 − 1

2
t3e4, t4e1 − 2t4e2 − 1

2
t4e4 + e5], {t1, t2, t3, t4}.

The result indicates that there is a 4 parameter family of complementary subspaces (parametrized
by t1, . . . , t4) and gives a basis for the subspaces. The Query command can now determine if any
of these complements defines a reductive decomposition and, if so, display a basis for the reductive
subspace m:
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> Query(H, M, ‘‘ReductivePair’’)[-1][1][2];

[(t2 + 1)e1 + (−2t2 + 1)e2 + (−1

2
t2 + 1

4
)e4, t2e1 + (−2t2 + 1)e2 − 1

2
t2e4, e3,

t4e1 − 2t4e2 − 1

2
t4e4 + e5].

Thus there is in fact a two parameter family of reductive decompositions of g relative to h.
To summarize, the Gödel spacetime is a perfect fluid solution of the Einstein equations which

is a locally rotationally symmetric, reductive homogeneous space.

C. Case splitting: a vacuum metric with no isometries

The ability to identify exceptional values of parameters or functions when solving a system
of equations—case splitting—is an extremely powerful recent development in symbolic solution
routines. Here we present an example of case splitting in the analysis of Killing vector fields. The
metric we shall consider comes from the class of spacetimes admitting a non-diverging, shear-free,
and null geodesic congruence.9, 11, 15 The metric g is expressed in coordinates (u, v, ζ, ζ ) as

g = dζ 
 dζ − du 
 (dv + W dζ + W dζ + Hdu), (2.5)

where 
 is the symmetric tensor product and

W = − 2v

ζ + ζ
, H = (ζ + ζ ) f (u)(eζ + eζ ) − v2

(ζ + ζ )2
. (2.6)

A bar on a quantity denotes complex conjugation.
It is readily verified using DifferentialGeometry functionality that the vector field ∂v determines

a non-diverging, shearfree, and null geodesic congruence, and furthermore, that this is a vacuum
metric of Petrov type N in any open region where f(u) �= 0. The relevant commands are NPSpin-
Coefficients and PetrovType. The spacetime is flat wherever f(u) = 0; for simplicity, we
will suppose f(u) �= 0 in what follows.

The spacetime can be defined within DifferentialGeometry via

> DGsetup([u, v, zeta, zetab], M):
> xi := evalDG(dv + W*dzeta + W*dzetab + H*du):
> W := - 2*v/(zeta + zetab):
> H := (zeta + zetab)* f(u)* (exp(zeta) + exp(zetab)) - vˆ2/(zeta
+ zetab)ˆ2:
> g := evalDG(dzeta &s dzetab - du &s xi):

Here the symbol &s denotes the symmetric tensor product.
We first look for solutions to the Killing equations making no specific choices for the function

f(u), in which case the PDE solvers treat f(u) as generic. The result is that there are no non-trivial
solutions:

> KillingVectors(g);

[ ]
Thus Eq. (2.5) provides an apparently rare instance of an explicit family of vacuum solutions to

the Einstein equations which admit no continuous symmetries.
For generic choices of f(u) there are no continuous isometries. However, it is possible that

specific choices of f(u) allow for the existence of Killing vector fields. This possibility is analyzed
by adding keyword arguments “parameters” and “auxiliaryequations” to the KillingVector
command. These keywords respectively identify the parameters and/or functions which are to be
investigated for exceptional values, and impose any desired restrictions on the parameter/functions.
The syntax of the command is
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> KV := KillingVectors(g, parameters=[f(u)], auxiliaryequations
= {f(u) <> 0});

The “auxiliaryequations” keyword is used to eliminate the trivial case f(u) = 0 from considera-
tion. The output of this command consists of a sequence of lists of Killing vector fields followed by
a list of the corresponding conditions on f(u) which allow them:

K V :=[ ], [(−2C1 + 1

2
u2 + C2u + 1

2
C2

2 )Du − (
1

2
ζ 2 + ζ ζ + vC2 + 1

2
ζ

2 + vu)Dv],

[ f (u) = f (u), f (u) = C3/(4C1 − u2 − 2C2u − C2
2 )2]. (2.7)

We thus obtain two classes of results. The first entry is an empty list which corresponds to the
condition f(u) = f(u); this recovers the result that for generic choices of f there are no solutions to the
Killing equations for this vacuum metric. The second entry is a three parameter family of Killing
vector fields corresponding to a three parameter family of choices for f(u),

f (u) = c

(a − bu − u2)2
. (2.8)

Thus for each generic choice of a, b, c in Eq. (2.8), there is a single Killing vector field

(a − bu − u2)∂u + [
(ζ + ζ )2 + v(b + 2u)

]
∂v. (2.9)

Subsequent case splitting analysis of the Killing vectors for this 3 parameter family of metrics
reveals that this is the maximal one-dimensional isometry group for all values of the parameters
except c = 0, which corresponds to flat spacetime.

III. KILLING TENSORS

Besides Killing vector fields, there are a number of fields whose existence can be used to
invariantly characterize spacetimes, e.g., homothetic vector fields, conformal killing vector fields,
Killing-Yano tensors, recurrent tensors, etc. Such tensor fields are discussed, e.g., in Ref. 11. All such
tensor fields share the feature that they are determined as solutions of systems of over-determined
PDEs. As such, they are amenable to symbolic analysis; all the “special tensor fields” of Ref. 11 can
be analyzed in DifferentialGeometry. Here we focus on the computation of Killing tensors.

Killing tensors are generalizations of Killing vectors. A Killing tensor on a spacetime (M, g) is
a symmetric tensor, Ka1...ap = K(a1...ap), satisfying

∇(a Kb1...bp) = 0, (3.1)

where ∇ is the connection on M compatible with g. Note that a Killing tensor of rank-1 is just the
1-form corresponding via g to a Killing vector field. The metric g is always a Killing tensor of rank
2. The symmetrized product of a Killing tensor of rank p and one of rank q is a Killing tensor of
rank p + q.

An important question that arises when computing Killing tensors is whether a given Killing
tensor is “reducible” in the sense of being constructed from (linear combinations over R of) the
symmetric products of lower rank Killing tensors. It is possible to construct various symbolic
algorithms which answer this question. Within DifferentialGeometry, a good strategy is to exploit
the command GetComponents, which gives the components of any element of a vector space in
terms of a given set of elements of that space.

To illustrate all of this, we consider the Killing tensors of rank 2 and 3 for the Gödel spacetime.
With the spacetime as defined in Eq. (2.2), we compute the rank-2 Killing tensors via

> KT := KillingTensors(g,2):

We have suppressed the lengthy output, which is a list of rank-2 tensor fields forming a basis
for the vector space K (over R) of solutions to Eq. (3.1). The dimension of K is obtained by asking
how many elements are in this list:
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> nops(KT);

15

To compute the “trivial” Killing tensors, we compute a basis KV of rank-1 Killing tensors (corre-
sponding to the 5 Killing vector fields of the Gödel metric) and a basis B for the algebra S of rank-2
symmetric tensors generated by them. Again we suppress the lengthy output.

> KV := KillingTensors(g,1):
> B := SymmetricProductsOfKillingTensors(KV, 2):

We then check to see which elements of KT are in the algebra S, by checking if they are in the
span of B with real, constant coefficients. Rather than displaying the components of KT in the basis
B, we simply ask if the Killing tensors are in the span of B:

> GetComponents(KT, B, method=‘‘real’’, trueorfalse=‘‘on’’);
true. (3.2)

The result “true” indicates that all the rank-2 Killing tensors are spanned by the rank-1 Killing
tensors (cf. Ref. 5). This, of course, could have been deduced from the fact that the dimension of
KT is 15, which is also the dimension of the symmetric algebra of rank-2 tensors generated by the
5 Killing vector fields. A similar (but more CPU intensive) analysis establishes that there are no
non-trivial rank-3 Killing tensors for the Gödel spacetime. First, we compute a basis of solutions to
the relevant differential equations; the solution space is 35 dimensional:

> KV3 := KillingTensors(g, 3):
> nops(KV3);

35

Since all rank-2 Killing tensors are reducible, we simply need to compute the dimension of the
vector space formed by symmetric tensor products of Killing vectors (rank-1 Killing tensors) to see
if there are any irreducible rank-3 Killing tensors. This vector space has dimension,(

5 + 3 − 1
3

)
= 35.

Thus there are no irreducible rank-3 Killing tensors for the Gödel spacetime.

IV. ALGEBRAIC PROPERTIES OF CURVATURE

The algebraic classification of curvature—“Petrov type” for classification of the Weyl tensor
and “Segre type” for classification of the Ricci tensor—is an extremely important tool for invariantly
characterizing spacetimes. The analysis needed to find the Petrov or Segre type is relatively straight-
forward, mathematically speaking, but the calculations can become quite involved, so here is a place
where computer algebra systems can be quite useful. The algorithms used by DifferentialGeometry
for algebraic classification of curvature are a refinement of those devised in Refs. 1 and 13. The input
to the algorithm is a null tetrad which the user may supply or which is constructed automatically
by DifferentialGeometry. The principal difficulties which arise in determining the Petrov/Segre type
symbolically include: (i) excessive computation times owing to a poor choice of null tetrad; (ii)
inability to determine whether various invariants are equal or vanish (“zero recognition problem”
for scalars); and (iii) the possibility of complicated branching of results depending upon exceptional
values of parameters or functions.

Finding a computationally effective null tetrad can be a bit of an art if the goal is to determine
the Petrov type, but the range of possibilities can be explored by applying various Lorentz trans-
formations via the NullTetradTransformation commands. However, if the Petrov type is
known AdaptedNullTetrad and/or PrincipalSpinors can be used to determine a family
of adapted null tetrads and/or corresponding principal spinors.
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The zero recognition problem is a fundamental issue in symbolic analysis; in DifferentialGe-
ometry, this is ameliorated by allowing the user to control and inspect all aspects of the classification
process. In particular, theinfolevel command allows the user to inspect each step of the classifica-
tion algorithm, the Preferences command allows the user to create custom-made simplification
rules, and the output option allows the user to examine the various algebraic and differential
equations which arise in determining the algebraic classification.

In many ways, the most intricate and interesting aspect of algebraic classification of spacetimes
is to handle the possible branching of the classification, depending upon particular values of functions
or parameters. In DifferentialGeometry, this is handled using customizable case-splitting analysis
options. This functionality we use below to uncover and classify some new solutions of the Einstein
equations which are hidden in a known ansatz.

We consider a family of hypersurface homogeneous spacetimes determined by a parameter a
and a function f (see Ref. 11, Sec. 13.3.3, Eq. (13.67)):

ds2 = − 2

(
xadu − dy

(a + 1)x

) [
dt + a(tdx + dy)/x + f (t)

(
xadu − dy

(a + 1)x

)]

+ (dx2 + dy2)
(t2 + 1)

2x2
. (4.1)

This metric can be defined as follows:

> DGsetup([t, u, x, y], M):
> alpha := evalDG(xˆa*du - 1/(a+1)/x*dy);

α := xadu − 1

(a + 1)x
dy (4.2)

> beta := evalDG(dt + a/x*(t*dx + dy) + f(t)*alpha);

β := dt + f (t)xadu + at

x
dx + (

a

x
− f (t)

(a + 1)x
)dy (4.3)

> g := evalDG(-alpha &s beta + (tˆ2+1)/2/xˆ2*(dx &t dx + dy &t
dy)):

Using a combination of the commands DGGramSchmidt to construct an orthonormal tetrad,
NullTetrad to construct the corresponding null tetrad, and NullTetradTransformation
to simplify the result, the we obtain the following null tetrad:

N T : = [Dt ,− f (t)Dt + x−a Du,

−a(I + t)√
t2 + 1

Dt + I x−a

√
t2 + 1(a + 1)

Du + x√
t2 + 1

Dx + I x√
t2 + 1

Dy,

a(I − t)√
t2 + 1

Dt − I x−a

√
t2 + 1(a + 1)

Du + x√
t2 + 1

Dx − I x√
t2 + 1

Dy].

Simply asking for the Petrov type of the spacetime (via the frame NT) will classify this metric
assuming the parameter a and function f and the spacetime point are all generic. Generically, the
metric is of type II.

> PetrovType(NT);
“II”.

Generic choices of a and f(t), however, do not lead to solutions of the Einstein equations. We
now investigate the Petrov types which can occur given that a and f(t) are adjusted so that g is an
Einstein metric. It is most efficient to perform all tensor computations in the anholonomic frame
provided by NT. To this end, we initialize the anholonomic frame defined by NT and define the
metric η in that frame.
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> FD := FrameData(NT, N): DGsetup(FD):
> eta := evalDG(-Theta1 &s Theta2 + Theta3 &s Theta4);

η := −�1�2 − �2�1 + �3�4 + �4�3.

We next compute the vacuum Einstein equations with cosmological constant. We first define
these equations as a tensor field EFE, then we extract the components of EFE to create a system of
differential equations denoted by EQ. The output is suppressed because of its complexity.

> EFE := evalDG(EinsteinTensor(eta) + Lambda * InverseMetric (eta)):
> EQ := DGinfo(EFE, ‘‘CoefficientSet’’):

The following application of the PetrovType command performs the following steps:

1. From the given null tetrad, the equations determining the various PetrovTypes are computed
and solved for a, � and f(t).

2. For each of these solutions, it is determined when a solution to EQ also exists.

In this way, we find all choices of a, � and f(t) which yield various possible Petrov types under
the condition that the metric is an Einstein metric. The result is presented as a table (PT) whose
individual entries are displayed below.16

> Tetrad := [E1, E2, E3, E4]:
> PT := PetrovType(Tetrad, auxiliaryequations = EQ, parameters =
[f(t), a, Lambda], method = ‘‘real’’):
> PT[‘‘I’’];

[ ]

> PT[‘‘II’’];

“generic′′

> PT[‘‘III’’];

[a = 1

2
,� = −39

16
, f (t) = 13

32
t2 + 17

32
]

> PT[‘‘D’’];

[a = 0,� = �, f (t) = (−1

6
t3� − �t − t + 1

2

� + 2

t
+ C1)

t

t2 + 1
]

> PT[‘‘N’’];

[a = 2,� = −3, f (t) = 1

2
t2 − 1

2
]

> PT[‘‘O’’];

[[a = 0,� = −3

2
, f (t) = 1

4
+ 1

4
t2], [a = −1

3
,� = −2

3
, f (t) = 1

9
t2 − 1

9
]].

The first entry of the table shows that the spacetime defined by Eq. (4.1) cannot be of Petrov
type I. The second table entry shows (again) that the metric is generically of type II, but is not an
Einstein metric in this case. The remaining entries show that there is a unique Einstein metric of
Petrov type III and of type N. There are two Einstein metrics of type O; these are two anti-De Sitter
spaces. Finally, there is a two parameter family of Einstein metrics of Petrov type D. That Eq. (4.1)
contains Einstein metrics of types III and N is well-documented,11 although our result for the type
III case corrects an error in Ref. 11 for the value of �. The observation that the family of metrics
(4.1) contains Einstein spaces of type D is apparently new.
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V. SYMMETRY REDUCTION OF FIELD EQUATIONS

Probably the most effective general method for solving nonlinear field equations is to look
for solutions admitting a prescribed group G of symmetries. Given a system of G-invariant differ-
ential equations for fields on a manifold M, one can convert the problem of finding G-invariant
solutions to the problem of solving a generally simpler set of reduced equations for fields on M/G.
The DifferentialGeometry package provides an environment in which structures from differential
geometry, Lie algebras and groups, and fiber bundles are tightly integrated. As such, it is well-suited
for geometric analysis of field equations, and in particular, the use of symmetry reduction to analyze
group-invariant solutions of field equations.2 Here we focus on two important tasks which arise when
analyzing a symmetry reduction of a field theory and which are here implemented symbolically for
the first time: (i) characterizing the most general group invariant field, and (ii) calculation of the
induced symmetry group of the reduced field equations. We illustrate this with the symbolic analysis
of the problem of finding gravitational plane waves, which can be defined as Ricci-flat spacetimes
admitting a particular class of 5 dimensional isometry groups (see Ref. 12, and references therein).

The manifold is denoted by M with coordinates (u, v, x, y). The desired isometry group action
is the 5-dimensional group G of diffeomorphisms of M generated by the vector fields,

X1 = ∂

∂v
, X2 = ∂

∂x
, X3 = ∂

∂y
, X4 = x

∂

∂v
+ P(u)

∂

∂x
, X5 = y

∂

∂v
+ Q(u)

∂

∂y
, (5.1)

where P(u) and Q(u) are any functions such that P′(u) > 0, Q′(u) > 0. Every gravitational plane wave
admits G as an isometry group for some choice of the functions P and Q; these functions determine
the amplitude and polarization of the wave.

We define the spacetime manifold and the infinitesimal generators of G as follows:

> DGsetup([u,v,x,y], M):
> X1 := D_v: X2 := D_x: X3 := D_y: X4 := evalDG(x*D_v + P(u)*D_x):

X5 := evalDG(y*D_v + Q(u)*D_y):
> KV := [X1, X2, X3, X4, X5]:

Our first task is to characterize the G-invariant spacetime metrics, that is, to find the general
form of rank-2 symmetric tensor fields which are invariant under the group action generated by the
vector fields KV. This can be done using the command InvariantGeometricObjectFields,
which solves the linear system of PDEs defining any group invariant field. For example, here we
find the invariant functions:17

> InvariantGeometricObjectFields(KV, [1]);

F1(u).

Thus all invariant functions are functions of the invariant u. In particular, the group orbits are the
hypersurfaces u = const. and the reduced spacetime manifold is M/G ≈ R with coordinate u.

Similarly, we can compute the most general symmetric tensor of type ( 0
2 ) which is invariant

under G. This determines the “reduced fields” from which group invariant solutions of the field

equations are obtained. First, we compute a basis S2 for symmetric tensors of type ( 0
2 ), then we

compute the G invariant fields:

> S2:=GenerateSymmetricTensors([du, dv, dx, dy], 2):
> S2invariant := InvariantGeometricObjectFields(KV, S2);

S2invariant : = F1(u)
(

− d

du
P(u)

d

du
Q(u)(du dv + dv du) + d

du
Q(u)dx dx + d

du
P(u)dy dy

)

+F2(u)du du. (5.2)

Thus the set of G-invariant symmetric tensors of type ( 0
2 ) is spanned by two quadratic forms:

Q1 = du ⊗ du, Q2 = −Q′(u)P ′(u)du 
 dv + Q′(u)dx ⊗ dx + P ′(u)dy ⊗ dy. (5.3)
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The most general G-invariant metric takes the form

g = a(u)Q1 + b(u)Q2, (5.4)

where b(u) > 0. The symmetry reduced fields on M/G ≈ R are a(u) and b(u).
One obtains symmetry reduced equations for a(u) and b(u) by substituting Eq. (5.4) into the

relevant field equations, e.g., the Einstein equations. Generally covariant field equations such as
the Einstein equations have the group Diff(M) of diffeomorphisms of M (acting by pull-back on
the metric) as a symmetry group. The full group of diffeomorphisms does not act on the space
of metrics (5.4), so Diff(M) cannot be a symmetry group of the symmetry reduced equations. The
subgroup of Diff(M) which does act on the G-invariant metrics and which will also be a symmetry
group of the reduced equations is the normalizer of G within Diff(M).2 Thus the normalizer is the
residual symmetry group after symmetry reduction. The normalizer of G in Diff(M) is the smallest
subgroup of Diff(M) containing G as a normal subgroup. Working infinitesimally, the Lie algebra
of the normalizer can be computed as the smallest algebra of vector fields containing the isometry
algebra generated by KV as an ideal. These vector fields are obtained by solving a large system of
linear PDEs which are amenable to symbolic analysis.

The DifferentialGeometry command InfinitesimalPseudoGroupNormalizer solves
these PDEs and thus computes the Lie algebra of the normalizer within the Lie algebra of all vector
fields.18 In the present example, we get
> Nor := InfinitesimalPseudoGroupNormalizer(KV);

Nor := (2 C1 v + F1(u))Dv + C1 x Dx + C1 y Dy .

Thus the residual symmetry group consists of a scaling of (v, x, y) and a u dependent translation of v.
These transformations can be computed explicitly using the DifferentialGeometry Flow command
as follows. First, for simplicity, we break the vector field Nor into its translational and scaling parts,
respectively:

> NorTrans := eval(Nor, _C1=0, _F1(u) = f(u));

NorT rans := f (u)Dv

> NorScale := eval(Nor, _C1=1, _F1(u) = 0);

Nor Scale := 2v Dv + x Dx + y Dy .

Then we compute each of the flows using parameters α and β, respectively. The result is two sets of
transformations, specified as relations between the original and transformed coordinate values:

> Trans := Flow(NorTrans, alpha);

T rans := [u = u, v = v + α f (u), x = x, y = y]

> Scale := Flow(NorScale, beta);

T rans := [u = u, v = e2βv, x = eβ x, y = eβ y].

Any generally covariant field theory (not just general relativity, or a theory of a metric) will admit
these transformations as symmetries upon symmetry reduction by the symmetry group defined by
Eq. (5.1).

We can verify that the residual symmetry group does indeed act on the G-invariant metric (5.4)
via the Pullback command. Defining Q1 and Q2 as in Eq. (5.3), we have

> Pullback(Trans, Q1);

du du

> Pullback(Trans, Q2)

−2α
d P(u)

du

d Q(u)

du

d f (u)

du
du du − d P(u)

du

d Q(u)

du
(du dv + dv du) + d Q(u)

du
dx dx + d P(u)

du
dy dy
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> Pullback(Scale, Q1);

du du

> Pullback(Scale, Q2);

e2β (−d P(u)

du

d Q(u)

du
(du dv + dv du) + d Q(u)

du
dx dx + d P(u)

du
dy dy).

Thus the action of the residual group on the functions (a(u), b(u)) defining the G-invariant metrics
can be expressed as

a(u) −→ a(u) − 2αP ′(u)Q′(u) f ′(u)b(u), b(u) −→ e2βb(u). (5.5)

From this action of the residual symmetry group, we see that the function a(u) can be “gauged” to
zero via Trans.

The reduced field equations, obtained by restricting the Einstein equations to metrics of the form
Eq. (5.4), are equivalent to a single ordinary differential equation which can easily be computed using
DifferentialGeometry. It can also be verified using DifferentialGeometry that the Einstein–Hilbert
Lagrangian density vanishes identically for plane wave metrics (5.4), so that the reduced equations
do not follow from the Einstein–Hilbert variational principle, in accord with the general theory of
the principle of symmetric criticality.3, 6
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