834 research outputs found
Home blood pressure monitoring improves the diagnosis of hypertension in hemodialysis patients
Using interdialytic ambulatory blood pressure (BP) recordings as the reference standard, we compared the performance of routine, standardized and home BP monitoring in 104 predominantly black patients on chronic hemodialysis for at least 3 months. Dialysis unit BP recordings were averaged over 2 weeks and home BP over 1 week. Awake ambulatory BP of ≥135 mmHg systolic or ≥85 mmHg diastolic was taken as evidence of hypertension. Average awake ambulatory BP was 128.1±21.6/73.5±13.5 mmHg, home BP 141.3±21.9/78.7±11.9 mmHg, standardized pre-dialysis BP 141.7±22.6/74.2±13.5 mmHg and post-dialysis 119.9±20.5/69.1±13.1 mmHg, routine pre-dialysis 145.4±21.8/79.0±13.1 mmHg and post-dialysis 131.5±19.2/72.5±11.4 mmHg. Sixty-three percent of the patients had well-controlled BP by ambulatory BP monitoring and isolated diastolic hypertension was rare (3%). The standard deviation of the differences between ambulatory and routine pre-dialysis BP was 17.6 mmHg, routine post-dialysis was 16.1 mmHg, standardized pre-dialysis was 16.4 mmHg, standardized post-dialysis was 14.1 mmHg, and home BP was 14.2 mmHg. The area under receiver operating characteristic curves was similar for home and standardized BP but lower for routine BP. Home systolic BP of ≥150 mmHg averaged over 1 week had the best combination of sensitivity (80%) and specificity (84.1%) in diagnosing systolic hypertension – present in 94% of the hypertensive dialysis patients. Home BP monitoring is similar to standardized recording of BP in hemodialysis patients. A systolic BP threshold of 150 mmHg at home averaged over 1 week serves as a useful predictor of hypertension diagnosed by ambulatory BP monitoring
Groundwater fluxes and flow paths within coastal barriers: Observations from a large-scale laboratory experiment (BARDEX II)
The dynamics of groundwater at the beach face land�ocean boundary have important implications to the exchange of water, nutrients, and pollutants between the ocean and coastal aquifers, and more subtly, varying groundwater levels may induce differing morphological response at the beach face. As a component of the multi-institution Barrier Dynamics Experiment (BARDEX II), groundwater fluxes and flow paths within a prototype-scale sandy barrier are quantified and reported at the three fundamental spatio-temporal scales (individual waves, the beach face, and total barrier), under controlled wave and water level conditions. A particular feature of the experimental programme was the inclusion of a back-barrier �lagoon�, that via a pump system and an intermediate water reservoir enabled the forcing of contrasting hydraulic gradients across the barrier. It was observed that the groundwater level, flow paths, and fluxes within the beach face region of the sand barrier were predominantly controlled by the action of waves at the beach face, regardless of the overall seaward- or landward-directed barrier-scale hydraulic gradients. In the presence of waves, all tests undertaken to complete this study developed a seaward gradient in this zone under the influence of waves. As a further result of wave forcing at the beach face boundary, localised groundwater flow divides were observed to develop, further partitioning the circulation and flow paths of groundwater within the prototype-scale sand barrier
Precise Tight-binding Description of the Band Structure of MgB2
We present a careful recasting of first-principles band structure
calculations for MgB2 in a non-orthogonal sp-tight-binding (TB) basis. Our TB
results almost exactly reproduce our full potential linearized augmented plane
wave results for the energy bands, the densities of states and the total
energies. Our procedure generates transferable Slater-Koster parameters which
should be useful for other studies of this important material.Comment: REVTEX, 2 Encapsulated PostScript Figure
Phonon Dispersion Relations in PrBa2Cu3O6+x (x ~ 0.2)
We report measurements of the phonon dispersion relations in
non-superconducting, oxygen-deficient PrBa2Cu3O6+x (x ~ 0.2) by inelastic
neutron scattering. The data are compared with a model of the lattice dynamics
based on a common interaction potential. Good agreement is achieved for all but
two phonon branches, which are significantly softer than predicted. These modes
are found to arise predominantly from motion of the oxygen ions in the CuO2
planes. Analogous modes in YBa2Cu3O6 are well described by the common
interaction potential model.Comment: 4 pages, 3 figures. Minor changes following referees' comment
Geometric Generalisations of SHAKE and RATTLE
A geometric analysis of the Shake and Rattle methods for constrained
Hamiltonian problems is carried out. The study reveals the underlying
differential geometric foundation of the two methods, and the exact relation
between them. In addition, the geometric insight naturally generalises Shake
and Rattle to allow for a strictly larger class of constrained Hamiltonian
systems than in the classical setting.
In order for Shake and Rattle to be well defined, two basic assumptions are
needed. First, a nondegeneracy assumption, which is a condition on the
Hamiltonian, i.e., on the dynamics of the system. Second, a coisotropy
assumption, which is a condition on the geometry of the constrained phase
space. Non-trivial examples of systems fulfilling, and failing to fulfill,
these assumptions are given
Onset of magnetism in B2 transition metals aluminides
Ab initio calculation results for the electronic structure of disordered bcc
Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6)
alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl,
NiAl) phases with point defects are presented. The calculations were performed
using the coherent potential approximation within the Korringa-Kohn-Rostoker
method (KKR-CPA) for the disordered case and the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied
in particular the onset of magnetism in Fe-Al and Co-Al systems as a function
of the defect structure. We found the appearance of large local magnetic
moments associated with the transition metal (TM) antisite defect in FeAl and
CoAl compounds, in agreement with the experimental findings. Moreover, we found
that any vacancies on both sublattices enhance the magnetic moments via
reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are
ferromagnetically ordered for the whole range of composition studied, whereas
Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in
Phys.Rev.
First- principle calculations of magnetic interactions in correlated systems
We present a novel approach to calculate the effective exchange interaction
parameters based on the realistic electronic structure of correlated magnetic
crystals in local approach with the frequency dependent self energy. The analog
of ``local force theorem'' in the density functional theory is proven for
highly correlated systems. The expressions for effective exchange parameters,
Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The
first-principle calculations of magnetic excitation spectrum for ferromagnetic
iron, with the local correlation effects from the numerically exact QMC-scheme
is presented.Comment: 17 pages, 3 Postscript figure
The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources
The production and analysis of distributed sources of 24Na and 222Rn in the
Sudbury Neutrino Observatory (SNO) are described. These unique sources provided
accurate calibrations of the response to neutrons, produced through
photodisintegration of the deuterons in the heavy water target, and to low
energy betas and gammas. The application of these sources in determining the
neutron detection efficiency and response of the 3He proportional counter
array, and the characteristics of background Cherenkov light from trace amounts
of natural radioactivity is described.Comment: 24 pages, 13 figure
X-ray standing wave and reflectometric characterization of multilayer structures
Microstructural characterization of synthetic periodic multilayers by x-ray
standing waves have been presented. It has been shown that the analysis of
multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW)
techniques can overcome the deficiencies of the individual techniques in
microstructural analysis. While interface roughnesses are more accurately
determined by the XRR technique, layer composition is more accurately
determined by the XSW technique where an element is directly identified by its
characteristic emission. These aspects have been explained with an example of a
20 period Pt/C multilayer. The composition of the C-layers due to Pt
dissolution in the C-layers, PtC, has been determined by the XSW
technique. In the XSW analysis when the whole amount of Pt present in the
C-layers is assumed to be within the broadened interface, it l eads to larger
interface roughness values, inconsistent with those determined by the XRR
technique. Constraining the interface roughness values to those determined by
the XRR technique, requires an additional amount of dissolved Pt in the
C-layers to expl ain the Pt fluorescence yield excited by the standing wave
field. This analysis provides the average composition PtC of the
C-layers .Comment: 12 pages RevTex, 10 eps figures embedde
- …