29,686 research outputs found
Antiferromagnetic correlations and impurity broadening of NMR linewidths in cuprate superconductors
We study a model of a d-wave superconductor with strong potential scatterers
in the presence of antiferromagnetic correlations and apply it to experimental
nuclear magnetic resonance (NMR) results on Zn impurities in the
superconducting state of YBCO. We then focus on the contribution of
impurity-induced paramagnetic moments, with Hubbard correlations in the host
system accounted for in Hartree approximation. We show that local magnetism
around individual impurities broadens the line, but quasiparticle interference
between impurity states plays an important role in smearing out impurity
satellite peaks. The model, together with estimates of vortex lattice effects,
provides a semi-quantitative description of the impurity concentration
dependence of the NMR line shape in the superconducting state, and gives a
qualitative description of the temperature dependence of the line asymmetry. We
argue that impurity-induced paramagnetism and resonant local density of states
effects are both necessary to explain existing experiments.Comment: 15 pages, 23 figures, submitted to Phys. Rev.
Robustness of the nodal d-wave spectrum to strongly fluctuating competing order
We resolve an existing controversy between, on the one hand, convincing
evidence for the existence of competing order in underdoped cuprates, and, on
the other hand, spectroscopic data consistent with a seemingly homogeneous
d-wave superconductor in the very same compounds. Specifically, we show how
short-range fluctuations of the competing order essentially restore the nodal
d-wave spectrum from the qualitatively distinct folded dispersion resulting
from homogeneous coexisting phases. The signatures of the fluctuating competing
order can be found mainly in a splitting of the antinodal quasi-particles and,
depending of the strength of the competing order, also in small induced nodal
gaps as found in recent experiments on underdoped La{2-x}SrxCuO4.Comment: 5 pages, 4 figure
Time-Dependent Random Walks and the Theory of Complex Adaptive Systems
Motivated by novel results in the theory of complex adaptive systems, we
analyze the dynamics of random walks in which the jumping probabilities are
{\it time-dependent}. We determine the survival probability in the presence of
an absorbing boundary. For an unbiased walk the survival probability is
maximized in the case of large temporal oscillations in the jumping
probabilities. On the other hand, a random walker who is drifted towards the
absorbing boundary performs best with a constant jumping probability. We use
the results to reveal the underlying dynamics responsible for the phenomenon of
self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure
Does money matter in inflation forecasting?.
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation
NICMOS2 hubble space telescope observations of the embedded cluster associated with Mon R2: Constraining the substellar initial mass function
We have analyzed Hubble Space Telescope NICMOS2 F110W-, F160W-, F165M-, and F207M-band images covering the central 1' × 1' region of the cluster associated with Mon R2 in order to constrain the initial mass function (IMF) down to 20M_J. The flux ratio between the F165M and F160W bands was used to measure the strength of the water-band absorption feature and select a sample of 12 out of the total sample of 181 objects that have effective temperatures between 2700 and 3300 K. These objects are placed in the H-R diagram together with sources observed by Carpenter et al. to estimate an age of ~1 Myr for the low-mass cluster population. By constructing extinction-limited samples, we are able to constrain the IMF and the fraction of stars with a circumstellar disk in a sample that is 90% complete for both high- and low-mass objects. For stars with estimated masses between 0.1 and 1.0 M_☉ for a 1 Myr population with A_V ≤ 19 mag, we find that 27% ± 9% have a near-infrared excess indicative of a circumstellar disk. The derived fraction is similar to or slightly lower than the fraction found in other star-forming regions of comparable age. We constrain the number of stars in the mass interval 0.08-1.0 M_☉ to the number of objects in the mass interval 0.02-0.08 M_☉ by forming the ratio R^(**) = N(0.08-1 M_☉)/N(0.02-0.08 M_☉) for objects in an extinction-limited sample complete for A_V ≤ 7 mag. The ratio is found to be R^(**) = 2.2 ± 1.3, assuming an age of 1 Myr, consistent with the similar ratio predicted by the system IMF proposed by Chabrier. The ratio is similar to the ratios observed toward the Orion Nebula Cluster and IC 348, as well as the ratio derived in the 28 deg^2 survey of Taurus by Guieu et al
Superconducting phase diagram of itinerant antiferromagnets
We study the phase diagram of the Hubbard model in the weak-coupling limit
for coexisting spin-density-wave order and spin-fluctuation-mediated
superconductivity. Both longitudinal and transverse spin fluctuations
contribute significantly to the effective interaction potential, which creates
Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We
find a dominant -wave solution in both electron- and hole-doped
cases. In the quasi-spin triplet channel, the longitudinal fluctuations give
rise to an effective attraction supporting a -wave gap, but are overcome by
repulsive contributions from the transverse fluctuations which disfavor
-wave pairing compared to . The sub-leading pair instability is
found to be in the -wave channel, but complex admixtures of and are
not energetically favored since their nodal structures coincide. Inclusion of
interband pairing, in which each fermion in the Cooper pair belongs to a
different spin-density-wave band, is considered for a range of electron dopings
in the regime of well-developed magnetic order. We demonstrate that these
interband pairing gaps, which are non-zero in the magnetic state, must have the
same parity under inversion as the normal intraband gaps. The self-consistent
solution to the full system of five coupled gap equations give intraband and
interband pairing gaps of structure and similar gap magnitude. In
conclusion, the gap dominates for both hole and electron doping
inside the spin-density-wave phase.Comment: 14 pages, 9 figure
Screened Perturbation Theory to Three Loops
The thermal physics of a massless scalar field with a phi^4 interaction is
studied within screened perturbation theory (SPT). In this method the
perturbative expansion is reorganized by adding and subtracting a mass term in
the lagrangian. We consider several different mass prescriptions that
generalize the one-loop gap equation to two-loop order. We calculate the
pressure and entropy to three-loop order and the screening mass to two-loop
order. In contrast to the weak-coupling expansion, the SPT-improved
approximations appear to converge even for rather large values of the coupling
constant.Comment: 30 pages, 10 figure
Eta electroproduction on nuclei in the nucleon resonance region
We investigate eta electroproduction on nuclei for Q^2=2.4 and 3.6 GeV^2 in
the framework of a coupled-channel BUU transport model. We analyze the
importance of final state interactions and side feeding and compare with
findings drawn from eta photoproduction. It is shown that in contrast to
photoproduction the influence of etas stemming from secondary processes becomes
important at high Q^2.Comment: 5 pages, 5 figure
Mass Expansions of Screened Perturbation Theory
The thermodynamics of massless phi^4-theory is studied within screened
perturbation theory (SPT). In this method the perturbative expansion is
reorganized by adding and subtracting a mass term in the Lagrangian. We
analytically calculate the pressure and entropy to three-loop order and the
screening mass to two-loop order, expanding in powers of m/T. The truncated
m/T-expansion results are compared with numerical SPT results for the pressure,
entropy and screening mass which are accurate to all orders in m/T. It is shown
that the m/T-expansion converges quickly and provides an accurate description
of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure
The mass content of the Sculptor dwarf spheroidal galaxy
We present a new determination of the mass content of the Sculptor dwarf
spheroidal galaxy, based on a novel approach which takes into account the two
distinct stellar populations present in this galaxy. This method helps to
partially break the well-known mass-anisotropy degeneracy present in the
modelling of pressure-supported stellar systems.Comment: 6 pages, 3 figures. To appear in the proceedings of IAU Symposium 254
"The Galaxy disk in a cosmological context", Copenhagen, June 200
- …