25,063 research outputs found

    Optimal cloning of coherent states by linear optics

    Get PDF
    We describe an optical scheme for optimal Gaussian n to m cloning of coherent states. The scheme, which generalizes a recently demonstrated scheme for 1 to 2 cloning, involves only linear optical components and homodyne detection.Comment: 5 pages, 4 figures, presented at the 13th Central European Workshop on Quantum Optics, May 23-27 2006, Vienna, Austria (Proceedings will be published in "Acta Physica Hungarica"); reference added, Eq. (8) correcte

    Experimental determination of the degree of quantum polarisation of continuous variable states

    Get PDF
    We demonstrate excitation-manifold resolved polarisation characterisation of continuous-variable (CV) quantum states. In contrast to traditional characterisation of polarisation that is based on the Stokes parameters, we experimentally determine the Stokes vector of each excitation manifold separately. Only for states with a given photon number does the methods coincide. For states with an indeterminate photon number, for example Gaussian states, the employed method gives a richer and more accurate description. We apply the method both in theory and in experiment to some common states to demonstrate its advantages.Comment: 5 page

    Use of ERTS data for a multidisciplinary analysis of Michigan resources

    Get PDF
    The author has identified the following significant results. The results of this investigation of ratioing simulated ERTS spectral bands and several non-ERTS bands (all collected by an airborne multispectral scanner) indicate that significant terrain information is available from band-ratio images. Ratio images, which are based on the relative spectral changes which occur from one band to another, are useful for enhancing differences and aiding the image interpreter in identifying and mapping the distribution of such terrain elements as seedling crops, all bare soil, organic soil, mineral soil, forest and woodlots, and marsh areas. In addition, the ratio technique may be useful for computer processing to obtain recognition images of large areas at lower costs than with statistical decision rules. The results of this study of ratio processing of aircraft MSS data will be useful for future processing and evaluation of ERTS-1 data for soil and landform studies. Additionally, the results of ratioing spectral bands other than those currently collected by ERTS-1 suggests that some other bands (particularly a thermal band) would be useful in future satellites

    Squeezed state purification with linear optics and feed forward

    Get PDF
    A scheme for optimal and deterministic linear optical purification of mixed squeezed Gaussian states is proposed and experimentally demonstrated. The scheme requires only linear optical elements and homodyne detectors, and allows the balance between purification efficacy and squeezing degradation to be controlled. One particular choice of parameters gave a ten-fold reduction of the thermal noise with a corresponding squeezing degradation of only 11%. We prove optimality of the protocol, and show that it can be used to enhance the performance of quantum informational protocols such as dense coding and entanglement generation.Comment: 4 pages, 3 figure

    W Plus Multiple Jets at the LHC with High Energy Jets

    Get PDF
    We study the production of a W boson in association with n hard QCD jets (for n>=2), with a particular emphasis on results relevant for the Large Hadron Collider (7 TeV and 8 TeV). We present predictions for this process from High Energy Jets, a framework for all-order resummation of the dominant contributions from wide-angle QCD emissions. We first compare predictions against recent ATLAS data and then shift focus to observables and regions of phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure

    Using superlattice potentials to probe long-range magnetic correlations in optical lattices

    Full text link
    In Pedersen et al. (2011) we proposed a method to utilize a temporally dependent superlattice potential to mediate spin-selective transport, and thereby probe long and short range magnetic correlations in optical lattices. Specifically this can be used for detecting antiferromagnetic ordering in repulsive fermionic optical lattice systems, but more generally it can serve as a means of directly probing correlations among the atoms by measuring the mean value of an observable, the number of double occupied sites. Here, we provide a detailed investigation of the physical processes which limit the effectiveness of this "conveyer belt method". Furthermore we propose a simple ways to improve the procedure, resulting in an essentially perfect (error-free) probing of the magnetic correlations. These results shows that suitably constructed superlattices constitute a promising way of manipulating atoms of different spin species as well as probing their interactions.Comment: 12 pages, 9 figure

    Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    Full text link
    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large. The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure

    Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

    Full text link
    We present a simple implementation of the dynamical mean-field theory approach to the electronic structure of strongly correlated materials. This implementation achieves full self-consistency over the charge density, taking into account correlation-induced changes to the total charge density and effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used, and the charge density is computed from moments of the many body momentum-distribution matrix. The calculation of the total energy is also considered, with a proper treatment of high-frequency tails of the Green's function and self-energy. The method is illustrated on two materials with well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the gamma-phase of metallic cerium, using the Hubbard-I approximation to the dynamical mean-field self-energy. The momentum-integrated spectral function and momentum-resolved dispersion of the Hubbard bands are calculated, as well as the volume-dependence of the total energy. We show that full self-consistency over the charge density, taking into account its modification by strong correlations, can be important for the computation of both thermodynamical and spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B

    The Electrostatic Ion Beam Trap : a mass spectrometer of infinite mass range

    Full text link
    We study the ions dynamics inside an Electrostatic Ion Beam Trap (EIBT) and show that the stability of the trapping is ruled by a Hill's equation. This unexpectedly demonstrates that an EIBT, in the reference frame of the ions works very similar to a quadrupole trap. The parallelism between these two kinds of traps is illustrated by comparing experimental and theoretical stability diagrams of the EIBT. The main difference with quadrupole traps is that the stability depends only on the ratio of the acceleration and trapping electrostatic potentials, not on the mass nor the charge of the ions. All kinds of ions can be trapped simultaneously and since parametric resonances are proportional to the square root of the charge/mass ratio the EIBT can be used as a mass spectrometer of infinite mass range
    corecore