4,273 research outputs found

    Naturally-phasematched second harmonic generation in a whispering gallery mode resonator

    Get PDF
    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes

    Coherent Quantum-Noise Cancellation for Optomechanical Sensors

    Full text link
    Using a flowchart representation of quantum optomechanical dynamics, we design coherent quantum-noise-cancellation schemes that can eliminate the back-action noise induced by radiation pressure at all frequencies and thus overcome the standard quantum limit of force sensing. The proposed schemes can be regarded as novel examples of coherent feedforward quantum control.Comment: 4 pages, 5 figures, v2: accepted by Physical Review Letter

    Cavity quantum electro-optics

    Full text link
    The quantum dynamics of the coupling between a cavity optical field and a resonator microwave field via the electro-optic effect is studied. This coupling has the same form as the opto-mechanical coupling via radiation pressure, so all previously considered opto-mechanical effects can in principle be observed in electro-optic systems as well. In particular, I point out the possibilities of laser cooling of the microwave mode, entanglement between the optical mode and the microwave mode via electro-optic parametric amplification, and back-action-evading optical measurements of a microwave quadrature.Comment: 6 pages, 3 figures; v2: updated and submitted, v3: extended, accepted by Physical Review

    Quantum reconstruction of an intense polarization squeezed optical state

    Get PDF
    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space providing a full quantum mechanical characterization of the measured polarization state.Comment: 4 pages, 4 eps color figure

    Experimental investigations of synchrotron radiation at the onset of the quantum regime

    Get PDF
    The classical description of synchrotron radiation fails at large Lorentz factors, γ\gamma, for relativistic electrons crossing strong transverse magnetic fields BB. In the rest frame of the electron this field is comparable to the so-called critical field B0=4.414⋅109B_0 = 4.414\cdot10^9 T. For χ=γB/B0≃1\chi = \gamma B/B_0 \simeq 1 quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the axis, we have experimentally investigated the transition from the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity.Comment: 11 pages, 18 figures, submitted to PR

    Kinematical Limits on Higgs Boson Production via Gluon Fusion in Association with Jets

    Get PDF
    In this paper, we analyze the high-energy limits for Higgs boson plus two jet production. We consider two high-energy limits, corresponding to two different kinematic regions: a) the Higgs boson is centrally located in rapidity between the two jets, and very far from either jet; b) the Higgs boson is close to one jet in rapidity, and both of these are very far from the other jet. In both cases the amplitudes factorize into impact factors or coefficient functions connected by gluons exchanged in the t channel. Accordingly, we compute the coefficient function for the production of a Higgs boson from two off-shell gluons, and the impact factors for the production of a Higgs boson in association with a gluon or a quark jet. We include the full top quark mass dependence and compare this with the result obtained in the large top-mass limit.Comment: 35 pages, 6 figure

    The Effects of Trunk Muscle Training on Physical Fitness and Sport-Specific Performance in Young and Adult Athletes: A Systematic Review and Meta-Analysis.

    Get PDF
    Background The role of trunk muscle training (TMT) for physical ftness (e.g., muscle power) and sport-specifc performance measures (e.g., swimming time) in athletic populations has been extensively examined over the last decades. However, a recent systematic review and meta-analysis on the efects of TMT on measures of physical ftness and sport-specifc performance in young and adult athletes is lacking. Objective To aggregate the efects of TMT on measures of physical ftness and sport-specifc performance in young and adult athletes and identify potential subject-related moderator variables (e.g., age, sex, expertise level) and training-related programming parameters (e.g., frequency, study length, session duration, and number of training sessions) for TMT efects. Data Sources A systematic literature search was conducted with PubMed, Web of Science, and SPORTDiscus, with no date restrictions, up to June 2021. Study Eligibility Criteria Only controlled trials with baseline and follow-up measures were included if they examined the efects of TMT on at least one measure of physical ftness (e.g., maximal muscle strength, change-of-direction speed (CODS)/ agility, linear sprint speed) and sport-specifc performance (e.g., throwing velocity, swimming time) in young or adult competitive athletes at a regional, national, or international level. The expertise level was classifed as either elite (competing at national and/or international level) or regional (i.e., recreational and sub-elite). Study Appraisal and Synthesis Methods The methodological quality of TMT studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. A random-efects model was used to calculate weighted standardized mean diferences (SMDs) between intervention and active control groups. Additionally, univariate sub-group analyses were independently computed for subject-related moderator variables and training-related programming parameters. Results Overall, 31 studies with 693 participants aged 11–37 years were eligible for inclusion. The methodological quality of the included studies was 5 on the PEDro scale. In terms of physical ftness, there were signifcant, small-to-large efects of TMT on maximal muscle strength (SMD =0.39), local muscular endurance (SMD =1.29), lower limb muscle power (SMD=0.30), linear sprint speed (SMD =0.66), and CODS/agility (SMD =0.70). Furthermore, a signifcant and moderate TMT efect was found for sport-specifc performance (SMD=0.64). Univariate sub-group analyses for subject-related moderator variables revealed signifcant efects of age on CODS/agility (p=0.04), with signifcantly large efects for children (SMD=1.53, p=0.002). Further, there was a signifcant efect of number of training sessions on muscle power and linear sprint speed (p≤0.03), with signifcant, small-to-large efects of TMT for>18 sessions compared to≤18 sessions (0.45≤SMD≤0.84, p≤0.003). Additionally, session duration signifcantly modulated TMT efects on linear sprint speed, CODS/agility, and sport-specifc performance (p≤0.05). TMT with session durations≤30 min resulted in signifcant, large efects on linear sprint speed and CODS/agility (1.66≤SMD≤2.42, p≤0.002), whereas session durations>30 min resulted in signifcant, large efects on sport-specifc performance (SMD=1.22, p=0.008). Conclusions Our fndings indicate that TMT is an efective means to improve selected measures of physical ftness and sportspecifc performance in young and adult athletes. Independent sub-group analyses suggest that TMT has the potential to improve CODS/agility, but only in children. Additionally, more (>18) and/or shorter duration (≤30 min) TMT sessions appear to be more efective for improving lower limb muscle power, linear sprint speed, and CODS/agility in young or adult competitive athletes.publishedVersio

    Electronic Structure and Valence Band Spectra of Bi4Ti3O12

    Full text link
    The x-ray photoelectron valence band spectrum and x-ray emission valence-band spectra (Ti K _beta_5, Ti L_alpha, O K_alpha) of Bi4Ti3O12 are presented (analyzed in the common energy scale) and interpreted on the basis of a band-structure calculation for an idealized I4/mmm structure of this material.Comment: 6 pages + 7 PostScript figures, RevTex3.0, to be published in Phys.Rev.B52 (Oct.95). Figures also available via anonymous ftp at ftp://ftp.physik.uni-osnabrueck.de/pub/apostnik/BiTiO

    Valence band excitations in V_2O_5

    Get PDF
    We present a joint theoretical and experimental investigation of the electronic and optical properties of vanadium pentoxide. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function. This in turn was used to derive the optical conductivity, which is compared to the results of band structure calculations. A good qualitative and quantitative agreement between the theoretical and the experimental optical conductivity was observed. The experimentally observed anisotropy of the optical properties of V_2O_5 could be understood in the light of an analysis of the theoretical data involving the decomposition of the calculated optical conductivity into contributions from transitions into selected energy regions of the conduction band. In addition, based upon a tight binding fit to the band structure, values are given for the effective V3d_xy-O2p hopping terms and are compared to the corresponding values for alpha'-NaV_2O_5.Comment: 6 pages (revtex),6 figures (jpg
    • …
    corecore