4,273 research outputs found
Naturally-phasematched second harmonic generation in a whispering gallery mode resonator
We demonstrate for the first time natural phase matching for optical
frequency doubling in a high-Q whispering gallery mode resonator made of
Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt
in-coupled continuous wave pump power. The observed saturation pump power of
3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This
suggests an application of our frequency doubler as a source of non-classical
light requiring only a low-power pump, which easily can be quantum noise
limited. Our theoretical analysis of the three-wave mixing in a whispering
gallery mode resonator provides the relative conversion efficiencies for
frequency doubling in various modes
Coherent Quantum-Noise Cancellation for Optomechanical Sensors
Using a flowchart representation of quantum optomechanical dynamics, we
design coherent quantum-noise-cancellation schemes that can eliminate the
back-action noise induced by radiation pressure at all frequencies and thus
overcome the standard quantum limit of force sensing. The proposed schemes can
be regarded as novel examples of coherent feedforward quantum control.Comment: 4 pages, 5 figures, v2: accepted by Physical Review Letter
Cavity quantum electro-optics
The quantum dynamics of the coupling between a cavity optical field and a
resonator microwave field via the electro-optic effect is studied. This
coupling has the same form as the opto-mechanical coupling via radiation
pressure, so all previously considered opto-mechanical effects can in principle
be observed in electro-optic systems as well. In particular, I point out the
possibilities of laser cooling of the microwave mode, entanglement between the
optical mode and the microwave mode via electro-optic parametric amplification,
and back-action-evading optical measurements of a microwave quadrature.Comment: 6 pages, 3 figures; v2: updated and submitted, v3: extended, accepted
by Physical Review
Quantum reconstruction of an intense polarization squeezed optical state
We perform a reconstruction of the polarization sector of the density matrix
of an intense polarization squeezed beam starting from a complete set of Stokes
measurements. By using an appropriate quasidistribution, we map this onto the
Poincare space providing a full quantum mechanical characterization of the
measured polarization state.Comment: 4 pages, 4 eps color figure
Experimental investigations of synchrotron radiation at the onset of the quantum regime
The classical description of synchrotron radiation fails at large Lorentz
factors, , for relativistic electrons crossing strong transverse
magnetic fields . In the rest frame of the electron this field is comparable
to the so-called critical field T. For quantum corrections are essential for the description of
synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV
penetrating a germanium single crystal along the axis, we have
experimentally investigated the transition from the regime where classical
synchrotron radiation is an adequate description, to the regime where the
emission drastically changes character; not only in magnitude, but also in
spectral shape. The spectrum can only be described by quantum synchrotron
radiation formulas. Apart from being a test of strong-field quantum
electrodynamics, the experimental results are also relevant for the design of
future linear colliders where beamstrahlung - a closely related process - may
limit the achievable luminosity.Comment: 11 pages, 18 figures, submitted to PR
Kinematical Limits on Higgs Boson Production via Gluon Fusion in Association with Jets
In this paper, we analyze the high-energy limits for Higgs boson plus two jet
production. We consider two high-energy limits, corresponding to two different
kinematic regions: a) the Higgs boson is centrally located in rapidity between
the two jets, and very far from either jet; b) the Higgs boson is close to one
jet in rapidity, and both of these are very far from the other jet. In both
cases the amplitudes factorize into impact factors or coefficient functions
connected by gluons exchanged in the t channel. Accordingly, we compute the
coefficient function for the production of a Higgs boson from two off-shell
gluons, and the impact factors for the production of a Higgs boson in
association with a gluon or a quark jet. We include the full top quark mass
dependence and compare this with the result obtained in the large top-mass
limit.Comment: 35 pages, 6 figure
The Effects of Trunk Muscle Training on Physical Fitness and Sport-Specific Performance in Young and Adult Athletes: A Systematic Review and Meta-Analysis.
Background The role of trunk muscle training (TMT) for physical ftness (e.g., muscle power) and sport-specifc performance measures (e.g., swimming time) in athletic populations has been extensively examined over the last decades. However, a
recent systematic review and meta-analysis on the efects of TMT on measures of physical ftness and sport-specifc performance in young and adult athletes is lacking.
Objective To aggregate the efects of TMT on measures of physical ftness and sport-specifc performance in young and adult athletes and identify potential subject-related moderator variables (e.g., age, sex, expertise level) and training-related programming parameters (e.g., frequency, study length, session duration, and number of training sessions) for TMT efects.
Data Sources A systematic literature search was conducted with PubMed, Web of Science, and SPORTDiscus, with no date restrictions, up to June 2021.
Study Eligibility Criteria Only controlled trials with baseline and follow-up measures were included if they examined the efects of TMT on at least one measure of physical ftness (e.g., maximal muscle strength, change-of-direction speed (CODS)/
agility, linear sprint speed) and sport-specifc performance (e.g., throwing velocity, swimming time) in young or adult competitive athletes at a regional, national, or international level. The expertise level was classifed as either elite (competing at
national and/or international level) or regional (i.e., recreational and sub-elite).
Study Appraisal and Synthesis Methods The methodological quality of TMT studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. A random-efects model was used to calculate weighted standardized mean diferences (SMDs) between intervention and active control groups. Additionally, univariate sub-group analyses were independently computed for subject-related moderator variables and training-related programming parameters.
Results Overall, 31 studies with 693 participants aged 11–37 years were eligible for inclusion. The methodological quality of the included studies was 5 on the PEDro scale. In terms of physical ftness, there were signifcant, small-to-large efects of TMT on maximal muscle strength (SMD =0.39), local muscular endurance (SMD =1.29), lower limb muscle power (SMD=0.30), linear sprint speed (SMD =0.66), and CODS/agility (SMD =0.70). Furthermore, a signifcant and moderate TMT efect was found for sport-specifc performance (SMD=0.64). Univariate sub-group analyses for subject-related moderator variables revealed signifcant efects of age on CODS/agility (p=0.04), with signifcantly large efects for children (SMD=1.53, p=0.002). Further, there was a signifcant efect of number of training sessions on muscle power and linear sprint speed (p≤0.03), with signifcant, small-to-large efects of TMT for>18 sessions compared to≤18 sessions (0.45≤SMD≤0.84, p≤0.003). Additionally, session duration signifcantly modulated TMT efects on linear sprint speed, CODS/agility, and sport-specifc performance (p≤0.05). TMT with session durations≤30 min resulted in signifcant, large efects on linear sprint speed and CODS/agility (1.66≤SMD≤2.42, p≤0.002), whereas session durations>30 min resulted in signifcant, large efects on sport-specifc performance (SMD=1.22, p=0.008).
Conclusions Our fndings indicate that TMT is an efective means to improve selected measures of physical ftness and sportspecifc performance in young and adult athletes. Independent sub-group analyses suggest that TMT has the potential to improve CODS/agility, but only in children. Additionally, more (>18) and/or shorter duration (≤30 min) TMT sessions appear to be more efective for improving lower limb muscle power, linear sprint speed, and CODS/agility in young or adult competitive athletes.publishedVersio
Electronic Structure and Valence Band Spectra of Bi4Ti3O12
The x-ray photoelectron valence band spectrum and x-ray emission valence-band
spectra (Ti K _beta_5, Ti L_alpha, O K_alpha) of Bi4Ti3O12 are presented
(analyzed in the common energy scale) and interpreted on the basis of a
band-structure calculation for an idealized I4/mmm structure of this material.Comment: 6 pages + 7 PostScript figures, RevTex3.0, to be published in
Phys.Rev.B52 (Oct.95). Figures also available via anonymous ftp at
ftp://ftp.physik.uni-osnabrueck.de/pub/apostnik/BiTiO
Valence band excitations in V_2O_5
We present a joint theoretical and experimental investigation of the
electronic and optical properties of vanadium pentoxide. Electron energy-loss
spectroscopy in transmission was employed to measure the momentum-dependent
loss function. This in turn was used to derive the optical conductivity, which
is compared to the results of band structure calculations. A good qualitative
and quantitative agreement between the theoretical and the experimental optical
conductivity was observed. The experimentally observed anisotropy of the
optical properties of V_2O_5 could be understood in the light of an analysis of
the theoretical data involving the decomposition of the calculated optical
conductivity into contributions from transitions into selected energy regions
of the conduction band. In addition, based upon a tight binding fit to the band
structure, values are given for the effective V3d_xy-O2p hopping terms and are
compared to the corresponding values for alpha'-NaV_2O_5.Comment: 6 pages (revtex),6 figures (jpg
- …