12 research outputs found

    Plant Biomarker Pattern, Screening Programme for Phytochemical Differences in Plants Exposed to Stress

    Get PDF
    A screening programme is developed to investigate phytochemical differences in plants xposed to stress compared with non-exposed plants. The screening programme, in its resent form or in a more simplified form, can be utilized in several different areas as a preliminary broad screening. The screening programme covers the most general groups of compounds found in plants. The following groups of phytochemical compounds are included in the programme: Unspecific compounds, organic acids, lipids, phenolic compounds, carbohydrates, terpenoids and N-, S- and P-containing compounds

    Plant Biomarker Pattern, Apples grown with various availability of organic nitrogen and with or witout the use of pesticides

    Get PDF
    In the recent years there has been an increasing focus on the quality and health value of organic plant products compared with conventional products. The use of pesticides and concentrated fertilisers in conventional agriculture implies a risk of effects on plant composition, which may affect health of the consumer (Brandt & Mølgaard, 2001). To determine if organically grown plant food could provide more or less benefits to health than conventional food, a first step is to investigate the differences in the composition and relative concentration of natural compounds in the plant products. In this project apples were grown with two levels of nitrogen availability and with or without the use of pesticides. The apples were screened for changes in the phytochemical composition and concentration. The work is affiliated to the project "Organic food and health" supported by the Danish Research Centre for Organic Farming (DARCOF). Biomarkers and biomarker patterns were presented in plants cultivated with low and high N and with pesticides. One biomarker was related to: • the type of N with and without pesticides • pesticides at high N and type of N without pesticides • pesticides at low and high N One biomarker pattern was related to: • the type of N • the type of N without pesticides • pesticides at low N and type of N without pesticides • pesticides at high N and type of N with pesticide

    miRNA profiling of circulating EpCAM(+) extracellular vesicles:promising biomarkers of colorectal cancer

    Get PDF
    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics. Here we describe a sensitive analytical method for isolation and subsequent miRNA profiling of epithelial-derived EVs from blood samples of patients with colorectal cancer (CRC). The epithelial-derived EVs were isolated by immunoaffinity-capture using the epithelial cell adhesion molecule (EpCAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood plasma isolated from CRC patients prior to surgery contained elevated levels of 13 EpCAM+-EV miRNAs compared with healthy individuals. Upon surgical tumour removal, the plasma levels of 8 of these were reduced (miR-16-5p, miR-23a-3p, miR-23b-3p, miR-27a-3p, miR-27b-3p, miR-30b-5p, miR-30c-5p and miR-222-3p). These findings indicate that the miRNAs are of tumour origin and may have potential as non-invasive biomarkers for detection of CRC. This work describes a non-invasive blood-based method for sensitive detection of cancer with potential for clinical use in relation to diagnosis and screening. We used the method to study CRC; however, it is not restricted to this disease. It may in principle be used to study any cancer that release epithelial-derived EVs into circulation

    A Comprehensive Investigation on Common Polymorphisms in the MDR1/ABCB1 Transporter Gene and Susceptibility to Colorectal Cancer

    Get PDF
    ATP Binding Cassette B1 (ABCB1) is a transporter with a broad substrate specificity involved in the elimination of several carcinogens from the gut. Several polymorphic variants within the ABCB1 gene have been reported as modulators of ABCB1-mediated transport. We investigated the impact of ABCB1 genetic variants on colorectal cancer (CRC) risk. A hybrid tagging/functional approach was performed to select 28 single nucleotide polymorphisms (SNPs) that were genotyped in 1,321 Czech subjects, 699 CRC cases and 622 controls. In addition, six potentially functional SNPs were genotyped in 3,662 German subjects, 1,809 cases and 1,853 controls from the DACHS study. We found that three functional SNPs (rs1202168, rs1045642 and rs868755) were associated with CRC risk in the German population. Carriers of the rs1202168_T and rs868755_T alleles had an increased risk for CRC (Ptrend = 0.016 and 0.029, respectively), while individuals bearing the rs1045642_C allele showed a decreased risk of CRC (Ptrend = 0.022). We sought to replicate the most significant results in an independent case-control study of 3,803 subjects, 2,169 cases and 1,634 controls carried out in the North of Germany. None of the SNPs tested were significantly associated with CRC risk in the replication study. In conclusion, in this study of about 8,800 individuals we show that ABCB1 gene polymorphisms play at best a minor role in the susceptibility to CRC

    A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump

    No full text
    Heavy metal pumps (P1B-ATPases) are important for cellular heavy metal homeostasis. AtHMA4, an Arabidopsis thaliana heavy metal pump of importance for plant Zn2+ nutrition, has an extended C-terminal domain containing 13 cysteine pairs and a terminal stretch of 11 histidines. Using a novel size-exclusion chromatography, inductively coupled plasma mass spectrometry approach we report that the C-terminal domain of AtHMA4 is a high affinity Zn2+ and Cd2+ chelator with capacity to bind 10 Zn2+ ions per C terminus. When AtHMA4 is expressed in a Zn2+-sensitive zrc1 cot1 yeast strain, sequential removal of the histidine stretch and the cysteine pairs confers a gradual increase in Zn2+ and Cd2+ tolerance and lowered Zn2+ and Cd2+ content of transformed yeast cells. We conclude that the C-terminal domain of AtHMA4 serves a dual role as Zn2+ and Cd2+ chelator (sensor) and as a regulator of the efficiency of Zn2+ and Cd2+ export. The identification of a post-translational handle on Zn2+ and Cd2+ transport efficiency opens new perspectives for regulation of Zn2+ nutrition and tolerance in eukaryotes. <br/

    Literaturverzeichnis

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore