34,072 research outputs found

    A computer program for anisotropic shallow-shell finite elements using symbolic integration

    Get PDF
    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language

    Stellar abundances and presolar grains trace the nucleosynthetic origin of molybdenum and ruthenium

    Full text link
    This work presents a large consistent study of molybdenum (Mo) and ruthenium (Ru) abundances in the Milky Way. These two elements are important nucleosynthetic diagnostics. In our sample of 71 Galactic metal-poor field stars, we detect Ru and/or Mo in 51 of these (59 including upper limits). The sample consists of high-resolution, high signal-to-noise spectra covering both dwarfs and giants from [Fe/H]=-0.63 down to -3.16. Thus we provide information on the behaviour of Mo I and Ru I at higher and lower metallicity than is currently known. We find a wide spread in the Mo and Ru abundances, which is typical of heavy elements. This indicates that several formation processes, in addition to high entropy winds, can be responsible for the formation of Mo and Ru. The formation processes are traced by comparing Mo and Ru to elements (Sr, Zr, Pd, Ag, Ba, and Eu) with known formation processes. We find contributions from different formation channels, namely p-, slow (s-), and rapid (r-) neutron-capture processes. Molybdenum is a highly convolved element that receives contributions from several processes, whereas Ru is mainly formed by the weak r-process as is silver. We also compare our absolute elemental stellar abundances to relative isotopic abundances of presolar grains extracted from meteorites. Their isotopic abundances can be directly linked to the formation process (e.g. r-only isotopes) providing a unique comparison between observationally derived abundances and the nuclear formation process. The comparison to abundances in presolar grains shows that the r-/s-process ratios from the presolar grains match the total elemental chemical composition derived from metal-poor halo stars with [Fe/H]~ -1.5 to -1.1 dex. This indicates that both grains and stars around and above [Fe/H]=-1.5 are equally (well) mixed and therefore do not support a heterogeneous presolar nebula... Abridged.Comment: 18 pages, 12 figures, accepted by A&

    Observation of Microlensing towards the Galactic Spiral Arms. EROS II 2 year survey

    Full text link
    We present the analysis of the light curves of 8.5 million stars observed during two seasons by EROS (Experience de Recherche d'Objets Sombres), in the galactic plane away from the bulge. Three stars have been found that exhibit luminosity variations compatible with gravitational microlensing effects due to unseen objects. The corresponding optical depth, averaged over four directions, is 0.38 (+0.53, -0.15) 10^{-6}. All three candidates have long Einstein radius crossing times (∌\sim 70 to 100 days). For one of them, the lack of evidence for a parallax or a source size effect enabled us to constrain the lens-source % geometric configuration. Another candidate displays a modulation of the magnification, which is compatible with the lensing of a binary source. The interpretation of the optical depths inferred from these observations is hindered by the imperfect knowledge of the distance to the target stars. Our measurements are compatible with expectations from simple galactic models under reasonable assumptions on the target distances.Comment: 11 pages, 13 figures, accepted by A&A in Aug 9

    A feminist new materialist experiment: exploring what else gets produced through encounters with children’s news media

    Get PDF
    In this paper we are concerned to grapple with the ways in which real world issues directly impact children’s lives, and ask what else gets produced through encounters with children’s global news media specifically within the contexts of the UK and Norway. Our aim is to experiment with worldling practices as a means to open up generative possibilities to encounter and reconfigure difficult knowledges. We take two contemporary events: the 2017 Grenfell Tower fire tragedy in London, and the 2018 Marjory Stoneman high school shooting massacre in Florida, as a means to attend to ways in which affects are materialised across multiple times and spaces. News reports of these harrowing events, alongside what they produced, in terms of child activism, racism and toxic masculinity, provided a catalyst for a feminist new materialist experiment in generating other knowledges through material-affective-embodied encounters. Newspapers, glue, sticky tape, string, torches, bags and a cartridge for a firearm undertook important work within a speculative workshop, where a small number of early childhood researchers came together to be open to multiple and experimental ways of (k)not-knowing in order to formulate collectively shared problems. Following Manning (2016) we recognise that to avoid getting stuck in familiar ways of thinking and doing we need to undertake research differently. We wondered how might the re-materialisation of these events (through objects, artefacts, sounds and images) shift our thinking about childhood in other directions. We dwell upon the affective work that these high-profile news events perform, and how they might become rearticulated through affective encounters with materiality. Attending to how these events worked on us involves staying with the trouble (Haraway, 2016) as it becomes reignited, mutated and amplified across time and in different contexts. Our goal is to generate other possibilities that seek to reconfigure the ‘image of the child’. By resisting comforts of recognition, reflection and identification we reach beyond what we think we know about how children are in the world, and instead argue for their entanglement with difficult knowledges through, ours and their, world-making practices

    Integrated parylene-cabled silicon probes for neural prosthetics

    Get PDF
    Recent advances in the field of neural prosthetics have demonstrated the thought control of a computer cursor. This capability relies primarily on electrode array surgically implanted into the brain as an acquisition source of neural activity. Various technologies have been developed for signal extraction; however most suffer from either fragile electrode shanks and bulky cables or inefficient use of surgical site areas. Here we present a design and initial testing results from high electrode density, silicon based arrays system with an integrated parylene cable. The greatly reduced flexible rigidity of the parylene cable is believed to relief possible mechanical damages due to relative motion between a brain and its skull

    Coreshine in L1506C - Evidence for a primitive big-grain component or indication for a turbulent core history?

    Full text link
    The recently discovered coreshine effect can aid in exploring the core properties and in probing the large grain population of the ISM. We discuss the implications of the coreshine detected from the molecular cloud core L1506C in the Taurus filament for the history of the core and the existence of a primitive ISM component of large grains becoming visible in cores. The coreshine surface brightness of L1506C is determined from IRAC Spitzer images at 3.6 micron. We perform grain growth calculations to estimate the grain size distribution in model cores similar in gas density, radius, and turbulent velocity to L1506C. Scattered light intensities at 3.6 micron are calculated for a variety of MRN and grain growth distributions to compare with the observed coreshine. For a core with the overall physical properties of L1506C, no detectable coreshine is predicted for an MRN size distribution. Extending the distribution to grain radii of about 0.65 Ό\mum allows to reproduce the observed surface brightness level in scattered light. Assuming the properties of L1506C to be preserved, models for the growth of grains in cores do not yield sufficient scattered light to account for the coreshine within the lifetime of the Taurus complex. Only increasing the core density and the turbulence amplifies the scattered light intensity to a level consistent with the observed coreshine brightness. The grains could be part of primitive omni-present large grain population becoming visible in the densest part of the ISM, could grow under the turbulent dense conditions of former cores, or in L1506C itself. In the later case, L1506C must have passed through a period of larger density and stronger turbulence. This would be consistent with the surprisingly strong depletion usually attributed to high column densities, and with the large-scale outward motion of the core envelope observed today.Comment: 6 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Electrolysis-based diaphragm actuators

    Get PDF
    This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 ”m of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability
    • 

    corecore