94 research outputs found

    FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells

    Get PDF
    Background The immunophilin FKBP12 binds to TGF-β family type I receptors, including the BMP type I receptor ALK2. FKBP12 keeps the type I receptor in an inactive state and controls signaling activity. Removal of FKBP12 with drugs such as the FKBP-ligand FK506 enhances BMP activity in various cell types. In multiple myeloma cells, activation of SMAD1/5/8 leads to apoptosis. We hypothesized that removing FKBP12 from ALK2 in myeloma cells would potentiate BMP-induced ALK2-SMAD1/5/8 activity and in consequence cell death. Methods Multiple myeloma cell lines were treated with FK506, or other FKBP-binding compounds, combined with different BMPs before analyzing SMAD1/5/8 activity and cell viability. SMAD1/5/8 activity was also investigated using a reporter cell line, INA-6 BRE-luc. To characterize the functional signaling receptor complex, we genetically manipulated receptor expression by siRNA, shRNA and CRISPR/Cas9 technology. Results FK506 potentiated BMP-induced SMAD1/5/8 activation and apoptosis in multiple myeloma cell lines. By using FKBP-binding compounds with different affinity profiles, and siRNA targeting FKBP12, we show that the FK506 effect is mediated by binding to FKBP12. Ligands that typically signal via ALK3 in myeloma cells, BMP2, BMP4, and BMP10, did not induce apoptosis in cells lacking ALK3. Notably, BMP10 competed with BMP6 and BMP9 and antagonized their activity via ALK2. However, upon addition of FK506, we saw a surprising shift in specificity, as the ALK3 ligands gained the ability to signal via ALK2 and induce apoptosis. This indicates that the receptor complex can switch from an inactive non-signaling complex (NSC) to an active one by adding FK506. This gain of activity was also seen in other cell types, indicating that the observed effects have broader relevance. BMP2, BMP4 and BMP10 depended on BMPR2 as type II receptor to signal, which contrasts with BMP6 and BMP9, that activate ALK2 more potently when BMPR2 is knocked down. Conclusions In summary, our data suggest that FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells, partly by switching an NSC into an active signaling complex. FKBP12 targeting compounds devoid of immunosuppressing activity could have potential in novel treatment strategies aiming at reducing multiple myeloma tumor load

    The role of bone morphogenetic proteins in myeloma cell survival

    No full text
    Multiple myeloma is characterized by slowly growing clones of malignant plasma cells in the bone marrow. The malignant state is frequently accompanied by osteolytic bone disease due to a disturbed balance between osteoblasts and osteoclasts. Bone morphogenetic proteins (BMPs) are present in the bone marrow and are important for several aspects of myeloma pathogenesis including growth and survival of tumor cells, bone homeostasis, and anemia. Among cancer cells, myeloma cells are particularly sensitive to growth inhibition and apoptosis induced by BMPs and therefore represent good models to study BMP receptor usage and signaling. Our review highlights and discusses the current knowledge on BMP signaling in myeloma

    Why do myeloma patients have bone disease? A historical perspective.

    No full text
    The question of how myeloma cells cause destruction of skeletal tissue has interested scientists for many years, and knowledge in this field has developed in parallel with the understanding of physiological bone remodeling. The identification of bioactive proteins of the cytokine class during the last decades of the previous century and mapping of their role in the regulation of anabolic and catabolic processes in bone, led to a sequence of hypotheses about how the same peptides also could be involved in myeloma-driven bone destruction. Although bone remodeling is now understood in detail, there is still no clear unified theory of how myeloma cells degrade bone. The reason for this could be that there is no single mechanism that is active in every patient. The common trait is possibly that myeloma cells benefit from bone destruction per se, and the strategy they use to accomplish this vary between patients

    Receptor binding competition: A paradigm for regulating TGF-β family action

    No full text
    The transforming growth factor (TGF)-β family is a group of structurally related, multifunctional growth factors, or ligands that are crucially involved in the development, regulation, and maintenance of animal tissues. In humans, the family counts over 33 members. These secreted ligands typically form multimeric complexes with two type I and two type II receptors to activate one of two distinct signal transduction branches. A striking feature of the family is its promiscuity, i.e., many ligands bind the same receptors and compete with each other for binding to these receptors. Although several explanations for this feature have been considered, its functional significance has remained puzzling. However, several recent reports have promoted the idea that ligand-receptor binding promiscuity and competition are critical features of the TGF-β family that provide an essential regulating function. Namely, they allow a cell to read and process multi-ligand inputs. This capability may be necessary for producing subtle, distinctive, or adaptive responses and, possibly, for facilitating developmental plasticity. Here, we review the molecular basis for ligand competition, with emphasis on molecular structures and binding affinities. We give an overview of methods that were used to establish experimentally ligand competition. Finally, we discuss how the concept of ligand competition may be fundamentally tied to human physiology, disease, and therapy

    TGF-β contamination of purified recombinant GDF15

    No full text
    Purified recombinant proteins for use in biomedical research are invaluable to investigate protein function. However, purity varies in protein batches made in mammalian expression systems, such as CHO-cells or HEK293-cells. This study points to caution while investigating effects of proteins related to the transforming growth factor (TGF)-β superfamily. TGF-β itself is a very potent cytokine and has effects on cells in the femtomolar range. Thus, even very small amounts of contaminating TGF-β in purified protein batches may influence the experimental results given that receptors for TGF-β are present. When we attempted to characterize possible receptors for the TGF-β superfamily ligand GDF15, striking similarities between GDF15-induced activities and known TGF-β activities were found. However, differences between batches of GDF15 were a concern and finally led us to the conclusion that the measured effects were caused by TGF-β and not by GDF15. Our results emphasize that purified recombinant proteins must be used with caution and warrant proper controls. Notably, some conclusions made about GDF15 in already published papers may not be supported by the results shown. Awareness about this issue in the scientific community may prevent spreading of false positive results
    corecore